Loading…
Spatial Characterization of Hot Melt Extruded Dispersion Systems Using Thermal Atomic Force Microscopy Methods: The Effects of Processing Parameters on Phase Separation
Purpose In this study we explore the use of nano-scale localized thermal analysis (LTA) and transition temperature microcopy (TTM) as a novel combined approach to studying phase separation in HME dispersions of cyclosporine A in Eudragit EPO. Methods Modulated temperature differential scanning calor...
Saved in:
Published in: | Pharmaceutical research 2014-07, Vol.31 (7), p.1744-1752 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
In this study we explore the use of nano-scale localized thermal analysis (LTA) and transition temperature microcopy (TTM) as a novel combined approach to studying phase separation in HME dispersions of cyclosporine A in Eudragit EPO.
Methods
Modulated temperature differential scanning calorimetry (MTDSC), attenuated total reflectance FTIR spectroscopy, nano-LTA and TTM were performed on raw materials and dispersions prepared by hot melt extrusion (HME) and spin coating. For samples prepared by HME, two mixing temperatures (110°C and 150°C) and residence times (5 and 15 min) were investigated.
Results
Spin coated samples showed an intermediate
T
g
for the mixed systems consistent with molecular dispersion formation. The HME samples prepared at 110°C showed evidence of inhomogeneity using MTDSC and FTIR, while those produced at 150°C h showed evidence for the formation of a single phase system using MTDSC. The nanothermal methods, however, indicated the presence of phase separated cyclosporine A at the higher preparation temperature while the TTM was able to map regions of differing penetration temperatures, indicating the presence of compositionally inhomogeneous regions in all but the high processing temperature/high residence time samples.
Conclusions
TTM is a potentially important new method for studying phase separation and that such separation may remain undetected or poorly understood using conventional bulk analytical techniques. |
---|---|
ISSN: | 0724-8741 1573-904X |
DOI: | 10.1007/s11095-013-1279-x |