Loading…
Solution Structure of a Sponge-Derived Cystine Knot Peptide and Its Notable Stability
A novel cystine knot peptide, asteropsin E (ASPE), was isolated from an Asteropus sp. marine sponge. The primary, secondary, and tertiary structures of ASPE were determined by high-resolution 2D NMR spectroscopy (900 MHz). With the exception of an N-terminal modification, ASPE shares properties with...
Saved in:
Published in: | Journal of natural products (Washington, D.C.) D.C.), 2014-02, Vol.77 (2), p.304-310 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel cystine knot peptide, asteropsin E (ASPE), was isolated from an Asteropus sp. marine sponge. The primary, secondary, and tertiary structures of ASPE were determined by high-resolution 2D NMR spectroscopy (900 MHz). With the exception of an N-terminal modification, ASPE shares properties with the previously reported asteropsins A–D, that is, the absence of basic residues, a highly acidic nature, conserved structurally important residues (including two cis-prolines), and a highly conserved tertiary structural framework. ASPE was found to be remarkably stable to gastrointestinal tract enzymes (chymotrypsin, elastase, pepsin, and trypsin) and to human plasma. |
---|---|
ISSN: | 0163-3864 1520-6025 |
DOI: | 10.1021/np400899a |