Loading…

An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects

Bioluminescence resonance energy transfer (BRET) is currently used for monitoring various intracellular events, including protein-protein interactions, in normal and aberrant signal transduction pathways. However, the BRET vectors currently used lack adequate sensitivity for imaging events of intere...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2007-08, Vol.67 (15), p.7175-7183
Main Authors: DE, Abhijit, LOENING, Andreas Markus, GAMBHIR, Sanjiv Sam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bioluminescence resonance energy transfer (BRET) is currently used for monitoring various intracellular events, including protein-protein interactions, in normal and aberrant signal transduction pathways. However, the BRET vectors currently used lack adequate sensitivity for imaging events of interest from both single living cells and small living subjects. Taking advantage of the critical relationship of BRET efficiency and donor quantum efficiency, we report generation of a novel BRET vector by fusing a GFP(2) acceptor protein with a novel mutant Renilla luciferase donor selected for higher quantum yield. This new BRET vector shows an overall 5.5-fold improvement in the BRET ratio, thereby greatly enhancing the dynamic range of the BRET signal. This new BRET strategy provides a unique platform to assay protein functions from both single live cells and cells located deep within small living subjects. The imaging utility of the new BRET vector is shown by constructing a sensor using two mammalian target of rapamycin pathway proteins (FKBP12 and FRB) that dimerize only in the presence of rapamycin. This new BRET vector should facilitate high-throughput sensitive BRET assays, including studies in single live cells and small living subjects. Applications will include anticancer therapy screening in cell culture and in small living animals.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-06-4623