Loading…

Dehydroascorbate Influences the Plant Cell Cycle through a Glutathione-Independent Reduction Mechanism

Glutathione is generally accepted as the principal electron donor for dehydroascorbate (DHA) reduction. Moreover, both glutathione and DHA affect cell cycle progression in plant cells. But other mechanisms for DHA reduction have been proposed. To investigate the connection between DHA and glutathion...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2004-04, Vol.134 (4), p.1479-1487
Main Authors: Geert Potters, Nele Horemans, Silvia Bellone, Roland J. Caubergs, Paolo Trost, Guisez, Yves, Asard, Han
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glutathione is generally accepted as the principal electron donor for dehydroascorbate (DHA) reduction. Moreover, both glutathione and DHA affect cell cycle progression in plant cells. But other mechanisms for DHA reduction have been proposed. To investigate the connection between DHA and glutathione, we have evaluated cellular ascorbate and glutathione concentrations and their redox status after addition of dehydroascorbate to medium of tobacco (Nicotiana tabacum) L. cv Bright Yellow-2 (BY-2) cells. Addition of 1 mM DHA did not change the endogenous glutathione concentration. Total glutathione depletion of BY-2 cells was achieved after 24-h incubation with 1 mM of the glutathione biosynthesis inhibitor L-buthionine sulfoximine. Even in these cells devoid of glutathione, complete uptake and internal reduction of 1 mM DHA was observed within 6 h, although the initial reduction rate was slower. Addition of DHA to a synchronized BY-2 culture, or depleting its glutathione content, had a synergistic effect on cell cycle progression. Moreover, increased intracellular glutathione concentrations did not prevent exogenous DHA from inducing a cell cycle shift. It is therefore concluded that, together with a glutathione-driven DHA reduction, a glutathione-independent pathway for DHA reduction exists in vivo, and that both compounds act independently in growth control.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.103.033548