Loading…

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats; mea...

Full description

Saved in:
Bibliographic Details
Published in:Iranian journal of pharmaceutical research : IJPR 2014-01, Vol.13 (4), p.1347-1355
Main Authors: Chu, Jin-Xiu, Li, Guang-Min, Gao, Xiu-Juan, Wang, Jian-Xing, Han, Shu-Ying
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats; meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intracellular Ca(2+) level was detected by Hitachi - 850 fluorospectrophotometer, calcineurin (CaN) activity was measured by colorimetric method, the expression of CaN protein was observed with immunocytochemistry, and the proto - oncogene c - fos mRNA expression was assessed with reverse transcription polymerase chain reaction (RT - PCR). Compared with control group, AngII could greatly stimulate the increase of intracellular Ca(2+) level, the activities and protein expression of cardiomyocytes CaN, and the expression of proto - oncogene c - fos mRNA in cultured neonatal rat cardiomyocytes, which could be effectively decreased by buckwheat rutin. Our results demonstrated that buckwheat rutin exhibited inhibitory effect on AngII - induced hypertrophy in cultured neonatal rat cardiomyocytes via Ca(2+) antagonism action thus block the CaN - dependent signal pathway.
ISSN:1735-0328
1726-6890