Loading…

A synthetic biology approach for a vaccine platform against known and newly emerging serotypes of bluetongue virus

Bluetongue is one of the major infectious diseases of ruminants and is caused by bluetongue virus (BTV), an arbovirus existing in nature in at least 26 distinct serotypes. Here, we describe the development of a vaccine platform for BTV. The advent of synthetic biology approaches and the development...

Full description

Saved in:
Bibliographic Details
Published in:Journal of virology 2014-11, Vol.88 (21), p.12222-12232
Main Authors: Nunes, Sandro Filipe, Hamers, Claude, Ratinier, Maxime, Shaw, Andrew, Brunet, Sylvie, Hudelet, Pascal, Palmarini, Massimo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bluetongue is one of the major infectious diseases of ruminants and is caused by bluetongue virus (BTV), an arbovirus existing in nature in at least 26 distinct serotypes. Here, we describe the development of a vaccine platform for BTV. The advent of synthetic biology approaches and the development of reverse genetics systems has allowed the rapid and reliable design and production of pathogen genomes which can be subsequently manipulated for vaccine production. We describe BTV vaccines based on "synthetic" viruses in which the outer core proteins of different BTV serotypes are incorporated into a common tissue-culture-adapted backbone. As a means of validation for this approach, we selected two BTV-8 synthetic reassortants and demonstrated their ability to protect sheep against virulent BTV-8 challenge. In addition to further highlight the possibilities of genome manipulation for vaccine production, we also designed and rescued a synthetic BTV chimera containing a VP2 protein, including regions derived from both BTV-1 and BTV-8. Interestingly, while the parental viruses were neutralized only by homologous antisera, the chimeric proteins could be neutralized by both BTV-1 and BTV-8 antisera. These data suggest that neutralizing epitopes are present in different areas of the BTV VP2 and likely "bivalent" strains eliciting neutralizing antibodies for multiple strains can be obtained. Overall, this vaccine platform can significantly reduce the time taken from the identification of new BTV strains to the development and production of new vaccines, since the viral genomes of these viruses can be entirely synthesized in vitro. In addition, these vaccines can be brought quickly into the market because they alter the approach, but not the final product, of existing commercial products.
ISSN:0022-538X
1098-5514
DOI:10.1128/JVI.02183-14