Loading…
Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity
Bispecific antibodies have therapeutic potential by expanding the functions of conventional antibodies. Many different formats of bispecific antibodies have meanwhile been developed. Most are genetic modifications of the antibody backbone to facilitate incorporation of two different variable domains...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2014-11, Vol.111 (47), p.16820-16825 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bispecific antibodies have therapeutic potential by expanding the functions of conventional antibodies. Many different formats of bispecific antibodies have meanwhile been developed. Most are genetic modifications of the antibody backbone to facilitate incorporation of two different variable domains into a single molecule. Here, we present a bispecific format where we have fused two full-sized IgG antibodies via their C termini using sortase transpeptidation and click chemistry to create a covalently linked IgG antibody heterodimer. By linking two potent anti-influenza A antibodies together, we have generated a full antibody dimer with bispecific activity that retains the activity and stability of the two fusion partners.
Significance Bispecific antibodies expand the function of conventional antibodies. However, therapeutic application of bispecifics is hampered by the reduced physiochemical stability of such molecules. We present a format for bispecific antibodies, fusing two full-sized antibodies via their C termini. This format does not require mutations in the antibody constant domains beyond installation of a five-residue tag, ensuring that the native antibody structure is fully retained in the bispecific product. We have validated the approach by linking two anti-influenza A antibodies, each active against a different subgroup of the virus. The bispecific antibody dimer retains the activity and the stability of the two original antibodies. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1408605111 |