Loading…

Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer

Abstract Background and purpose Target volumes and organs-at-risk (OARs) for radiotherapy (RT) planning are manually defined, which is a tedious and inaccurate process. We sought to assess the feasibility, time reduction, and acceptability of an atlas-based autosegmentation (AS) compared to manual s...

Full description

Saved in:
Bibliographic Details
Published in:Radiotherapy and oncology 2014-09, Vol.112 (3), p.321-325
Main Authors: Walker, Gary V, Awan, Musaddiq, Tao, Randa, Koay, Eugene J, Boehling, Nicholas S, Grant, Jonathan D, Sittig, Dean F, Gunn, Gary Brandon, Garden, Adam S, Phan, Jack, Morrison, William H, Rosenthal, David I, Mohamed, Abdallah Sherif Radwan, Fuller, Clifton David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background and purpose Target volumes and organs-at-risk (OARs) for radiotherapy (RT) planning are manually defined, which is a tedious and inaccurate process. We sought to assess the feasibility, time reduction, and acceptability of an atlas-based autosegmentation (AS) compared to manual segmentation (MS) of OARs. Materials and methods A commercial platform generated 16 OARs. Resident physicians were randomly assigned to modify AS OAR (AS + R) or to draw MS OAR followed by attending physician correction. Dice similarity coefficient (DSC) was used to measure overlap between groups compared with attending approved OARs (DSC = 1 means perfect overlap). 40 cases were segmented. Results Mean ± SD segmentation time in the AS + R group was 19.7 ± 8.0 min, compared to 28.5 ± 8.0 min in the MS cohort, amounting to a 30.9% time reduction (Wilcoxon p < 0.01). For each OAR, AS DSC was statistically different from both AS + R and MS ROIs (all Steel–Dwass p < 0.01) except the spinal cord and the mandible, suggesting oversight of AS/MS processes is required; AS + R and MS DSCs were non-different. AS compared to attending approved OAR DSCs varied considerably, with a chiasm mean ± SD DSC of 0.37 ± 0.32 and brainstem of 0.97 ± 0.03. Conclusions Autosegmentation provides a time savings in head and neck regions of interest generation. However, attending physician approval remains vital.
ISSN:0167-8140
1879-0887
DOI:10.1016/j.radonc.2014.08.028