Loading…
An Efficient Method for the In Vitro Production of Azol(in)e-Based Cyclic Peptides
Heterocycle‐containing cyclic peptides are promising scaffolds for the pharmaceutical industry but their chemical synthesis is very challenging. A new universal method has been devised to prepare these compounds by using a set of engineered marine‐derived enzymes and substrates obtained from a famil...
Saved in:
Published in: | Angewandte Chemie International Edition 2014-12, Vol.53 (51), p.14171-14174 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Heterocycle‐containing cyclic peptides are promising scaffolds for the pharmaceutical industry but their chemical synthesis is very challenging. A new universal method has been devised to prepare these compounds by using a set of engineered marine‐derived enzymes and substrates obtained from a family of ribosomally produced and post‐translationally modified peptides called the cyanobactins. The substrate precursor peptide is engineered to have a non‐native protease cleavage site that can be rapidly cleaved. The other enzymes used are heterocyclases that convert Cys or Cys/Ser/Thr into their corresponding azolines. A macrocycle is formed using a macrocyclase enzyme, followed by oxidation of the azolines to azoles with a specific oxidase. The work is exemplified by the production of 17 macrocycles containing 6–9 residues representing 11 out of the 20 canonical amino acids.
Heterocycle‐containing cyclic peptides are promising scaffolds for the pharmaceutical industry, but their chemical synthesis is very challenging. A new universal method has been devised to prepare these compounds by using a set of engineered marine‐derived enzymes and substrates. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201408082 |