Loading…

Cytoplasmic TAF2–TAF8–TAF10 complex provides evidence for nuclear holo–TFIID assembly from preformed submodules

General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID—a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)—assembles into a functional transcription fac...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2015-01, Vol.6 (1), p.6011-6011, Article 6011
Main Authors: Trowitzsch, Simon, Viola, Cristina, Scheer, Elisabeth, Conic, Sascha, Chavant, Virginie, Fournier, Marjorie, Papai, Gabor, Ebong, Ima-Obong, Schaffitzel, Christiane, Zou, Juan, Haffke, Matthias, Rappsilber, Juri, Robinson, Carol V., Schultz, Patrick, Tora, Laszlo, Berger, Imre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c542t-3b7f60d4f8260d6e436451be26a4991a0dbe73bef8d0e5959f3f5a2d51bbcb2e3
cites cdi_FETCH-LOGICAL-c542t-3b7f60d4f8260d6e436451be26a4991a0dbe73bef8d0e5959f3f5a2d51bbcb2e3
container_end_page 6011
container_issue 1
container_start_page 6011
container_title Nature communications
container_volume 6
creator Trowitzsch, Simon
Viola, Cristina
Scheer, Elisabeth
Conic, Sascha
Chavant, Virginie
Fournier, Marjorie
Papai, Gabor
Ebong, Ima-Obong
Schaffitzel, Christiane
Zou, Juan
Haffke, Matthias
Rappsilber, Juri
Robinson, Carol V.
Schultz, Patrick
Tora, Laszlo
Berger, Imre
description General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID—a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)—assembles into a functional transcription factor is poorly understood. Here we describe a heterotrimeric TFIID subcomplex consisting of the TAF2, TAF8 and TAF10 proteins, which assembles in the cytoplasm. Using native mass spectrometry, we define the interactions between the TAFs and uncover a central role for TAF8 in nucleating the complex. X-ray crystallography reveals a non-canonical arrangement of the TAF8–TAF10 histone fold domains. TAF2 binds to multiple motifs within the TAF8 C-terminal region, and these interactions dictate TAF2 incorporation into a core–TFIID complex that exists in the nucleus. Our results provide evidence for a stepwise assembly pathway of nuclear holo–TFIID, regulated by nuclear import of preformed cytoplasmic submodules. TFIID is an essential transcription factor complex that controls the expression of most protein-coding genes in eukaryotes. Here the authors identify and characterize a complex containing TAF2, TAF8 and TAF10, which assembles in the cytoplasm before integration into the nuclear holo–TFIID complex.
doi_str_mv 10.1038/ncomms7011
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4309443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652401410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-3b7f60d4f8260d6e436451be26a4991a0dbe73bef8d0e5959f3f5a2d51bbcb2e3</originalsourceid><addsrcrecordid>eNplkc1uEzEQxy0EolXaCw-ALHGBooA_9-OCFKWERorEpZwtr3e22cpeL3Y2IjfegTfkSfBq-xFaX_6W5zf_8cwg9IaST5Tw4nNnvHMxJ5S-QKeMCDqnOeMvj-4n6DzGW5IOL2khxGt0wqQsMlpmp2hYHna-tzq61uDrxYr9_f0nSTEJJTjZ9xZ-4T74fVtDxDBKZwA3PuBuMBZ0wFtv_ZiyWq8vsY4RXGUPuAnepURIpIMax6Fyvh4sxDP0qtE2wvmdztCP1dfr5dV88_3bernYzI0UbDfnVd5kpBZNwZJkIHgmJK2AZVqUJdWkriDnFTRFTUCWsmx4IzWrE1OZigGfoS-Tb59KQ22g2wVtVR9ap8NBed2q_yNdu1U3fq8EJ6UQPBl8mAy2T9KuFhs1vhEuZM5ouaeJfX9XLPifA8Sdcm00YK3uwA9R0UwyQahIa5uhd0_QWz-ELo0iUanFMpfFSF1MlAk-xjTGhx9Qosblq8flJ_jtcasP6P2qE_BxAmIKdTcQjmo-t_sH0O28_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645197580</pqid></control><display><type>article</type><title>Cytoplasmic TAF2–TAF8–TAF10 complex provides evidence for nuclear holo–TFIID assembly from preformed submodules</title><source>PubMed Central(OpenAccess)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Trowitzsch, Simon ; Viola, Cristina ; Scheer, Elisabeth ; Conic, Sascha ; Chavant, Virginie ; Fournier, Marjorie ; Papai, Gabor ; Ebong, Ima-Obong ; Schaffitzel, Christiane ; Zou, Juan ; Haffke, Matthias ; Rappsilber, Juri ; Robinson, Carol V. ; Schultz, Patrick ; Tora, Laszlo ; Berger, Imre</creator><creatorcontrib>Trowitzsch, Simon ; Viola, Cristina ; Scheer, Elisabeth ; Conic, Sascha ; Chavant, Virginie ; Fournier, Marjorie ; Papai, Gabor ; Ebong, Ima-Obong ; Schaffitzel, Christiane ; Zou, Juan ; Haffke, Matthias ; Rappsilber, Juri ; Robinson, Carol V. ; Schultz, Patrick ; Tora, Laszlo ; Berger, Imre</creatorcontrib><description>General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID—a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)—assembles into a functional transcription factor is poorly understood. Here we describe a heterotrimeric TFIID subcomplex consisting of the TAF2, TAF8 and TAF10 proteins, which assembles in the cytoplasm. Using native mass spectrometry, we define the interactions between the TAFs and uncover a central role for TAF8 in nucleating the complex. X-ray crystallography reveals a non-canonical arrangement of the TAF8–TAF10 histone fold domains. TAF2 binds to multiple motifs within the TAF8 C-terminal region, and these interactions dictate TAF2 incorporation into a core–TFIID complex that exists in the nucleus. Our results provide evidence for a stepwise assembly pathway of nuclear holo–TFIID, regulated by nuclear import of preformed cytoplasmic submodules. TFIID is an essential transcription factor complex that controls the expression of most protein-coding genes in eukaryotes. Here the authors identify and characterize a complex containing TAF2, TAF8 and TAF10, which assembles in the cytoplasm before integration into the nuclear holo–TFIID complex.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms7011</identifier><identifier>PMID: 25586196</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 101/58 ; 13/1 ; 13/106 ; 13/51 ; 13/89 ; 14/35 ; 14/63 ; 631/337/572 ; 631/45/612/1229 ; 631/45/612/822 ; 631/80/389/2029 ; 82/103 ; 82/75 ; 82/80 ; 82/83 ; Amino Acid Motifs ; Calorimetry ; Cell Nucleus - metabolism ; Crystallography, X-Ray ; Cytoplasm - metabolism ; HeLa Cells ; Histones - chemistry ; Humanities and Social Sciences ; Humans ; Life Sciences ; Mass Spectrometry - methods ; Models, Molecular ; multidisciplinary ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Recombinant Proteins - metabolism ; Science ; Science (multidisciplinary) ; Surface Plasmon Resonance ; TATA-Binding Protein Associated Factors - metabolism ; Transcription Factor TFIID - chemistry ; Transcription Factor TFIID - metabolism ; Transcription Factors - metabolism</subject><ispartof>Nature communications, 2015-01, Vol.6 (1), p.6011-6011, Article 6011</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Jan 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-3b7f60d4f8260d6e436451be26a4991a0dbe73bef8d0e5959f3f5a2d51bbcb2e3</citedby><cites>FETCH-LOGICAL-c542t-3b7f60d4f8260d6e436451be26a4991a0dbe73bef8d0e5959f3f5a2d51bbcb2e3</cites><orcidid>0000-0001-7829-5505 ; 0000-0002-2779-8679 ; 0000-0001-7398-2250 ; 0000-0001-7518-9045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1645197580/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1645197580?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25728,27898,27899,36986,36987,44563,53763,53765,75093</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25586196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03457219$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Trowitzsch, Simon</creatorcontrib><creatorcontrib>Viola, Cristina</creatorcontrib><creatorcontrib>Scheer, Elisabeth</creatorcontrib><creatorcontrib>Conic, Sascha</creatorcontrib><creatorcontrib>Chavant, Virginie</creatorcontrib><creatorcontrib>Fournier, Marjorie</creatorcontrib><creatorcontrib>Papai, Gabor</creatorcontrib><creatorcontrib>Ebong, Ima-Obong</creatorcontrib><creatorcontrib>Schaffitzel, Christiane</creatorcontrib><creatorcontrib>Zou, Juan</creatorcontrib><creatorcontrib>Haffke, Matthias</creatorcontrib><creatorcontrib>Rappsilber, Juri</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><creatorcontrib>Schultz, Patrick</creatorcontrib><creatorcontrib>Tora, Laszlo</creatorcontrib><creatorcontrib>Berger, Imre</creatorcontrib><title>Cytoplasmic TAF2–TAF8–TAF10 complex provides evidence for nuclear holo–TFIID assembly from preformed submodules</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID—a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)—assembles into a functional transcription factor is poorly understood. Here we describe a heterotrimeric TFIID subcomplex consisting of the TAF2, TAF8 and TAF10 proteins, which assembles in the cytoplasm. Using native mass spectrometry, we define the interactions between the TAFs and uncover a central role for TAF8 in nucleating the complex. X-ray crystallography reveals a non-canonical arrangement of the TAF8–TAF10 histone fold domains. TAF2 binds to multiple motifs within the TAF8 C-terminal region, and these interactions dictate TAF2 incorporation into a core–TFIID complex that exists in the nucleus. Our results provide evidence for a stepwise assembly pathway of nuclear holo–TFIID, regulated by nuclear import of preformed cytoplasmic submodules. TFIID is an essential transcription factor complex that controls the expression of most protein-coding genes in eukaryotes. Here the authors identify and characterize a complex containing TAF2, TAF8 and TAF10, which assembles in the cytoplasm before integration into the nuclear holo–TFIID complex.</description><subject>101/28</subject><subject>101/58</subject><subject>13/1</subject><subject>13/106</subject><subject>13/51</subject><subject>13/89</subject><subject>14/35</subject><subject>14/63</subject><subject>631/337/572</subject><subject>631/45/612/1229</subject><subject>631/45/612/822</subject><subject>631/80/389/2029</subject><subject>82/103</subject><subject>82/75</subject><subject>82/80</subject><subject>82/83</subject><subject>Amino Acid Motifs</subject><subject>Calorimetry</subject><subject>Cell Nucleus - metabolism</subject><subject>Crystallography, X-Ray</subject><subject>Cytoplasm - metabolism</subject><subject>HeLa Cells</subject><subject>Histones - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mass Spectrometry - methods</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Surface Plasmon Resonance</subject><subject>TATA-Binding Protein Associated Factors - metabolism</subject><subject>Transcription Factor TFIID - chemistry</subject><subject>Transcription Factor TFIID - metabolism</subject><subject>Transcription Factors - metabolism</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkc1uEzEQxy0EolXaCw-ALHGBooA_9-OCFKWERorEpZwtr3e22cpeL3Y2IjfegTfkSfBq-xFaX_6W5zf_8cwg9IaST5Tw4nNnvHMxJ5S-QKeMCDqnOeMvj-4n6DzGW5IOL2khxGt0wqQsMlpmp2hYHna-tzq61uDrxYr9_f0nSTEJJTjZ9xZ-4T74fVtDxDBKZwA3PuBuMBZ0wFtv_ZiyWq8vsY4RXGUPuAnepURIpIMax6Fyvh4sxDP0qtE2wvmdztCP1dfr5dV88_3bernYzI0UbDfnVd5kpBZNwZJkIHgmJK2AZVqUJdWkriDnFTRFTUCWsmx4IzWrE1OZigGfoS-Tb59KQ22g2wVtVR9ap8NBed2q_yNdu1U3fq8EJ6UQPBl8mAy2T9KuFhs1vhEuZM5ouaeJfX9XLPifA8Sdcm00YK3uwA9R0UwyQahIa5uhd0_QWz-ELo0iUanFMpfFSF1MlAk-xjTGhx9Qosblq8flJ_jtcasP6P2qE_BxAmIKdTcQjmo-t_sH0O28_g</recordid><startdate>20150114</startdate><enddate>20150114</enddate><creator>Trowitzsch, Simon</creator><creator>Viola, Cristina</creator><creator>Scheer, Elisabeth</creator><creator>Conic, Sascha</creator><creator>Chavant, Virginie</creator><creator>Fournier, Marjorie</creator><creator>Papai, Gabor</creator><creator>Ebong, Ima-Obong</creator><creator>Schaffitzel, Christiane</creator><creator>Zou, Juan</creator><creator>Haffke, Matthias</creator><creator>Rappsilber, Juri</creator><creator>Robinson, Carol V.</creator><creator>Schultz, Patrick</creator><creator>Tora, Laszlo</creator><creator>Berger, Imre</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7829-5505</orcidid><orcidid>https://orcid.org/0000-0002-2779-8679</orcidid><orcidid>https://orcid.org/0000-0001-7398-2250</orcidid><orcidid>https://orcid.org/0000-0001-7518-9045</orcidid></search><sort><creationdate>20150114</creationdate><title>Cytoplasmic TAF2–TAF8–TAF10 complex provides evidence for nuclear holo–TFIID assembly from preformed submodules</title><author>Trowitzsch, Simon ; Viola, Cristina ; Scheer, Elisabeth ; Conic, Sascha ; Chavant, Virginie ; Fournier, Marjorie ; Papai, Gabor ; Ebong, Ima-Obong ; Schaffitzel, Christiane ; Zou, Juan ; Haffke, Matthias ; Rappsilber, Juri ; Robinson, Carol V. ; Schultz, Patrick ; Tora, Laszlo ; Berger, Imre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-3b7f60d4f8260d6e436451be26a4991a0dbe73bef8d0e5959f3f5a2d51bbcb2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>101/28</topic><topic>101/58</topic><topic>13/1</topic><topic>13/106</topic><topic>13/51</topic><topic>13/89</topic><topic>14/35</topic><topic>14/63</topic><topic>631/337/572</topic><topic>631/45/612/1229</topic><topic>631/45/612/822</topic><topic>631/80/389/2029</topic><topic>82/103</topic><topic>82/75</topic><topic>82/80</topic><topic>82/83</topic><topic>Amino Acid Motifs</topic><topic>Calorimetry</topic><topic>Cell Nucleus - metabolism</topic><topic>Crystallography, X-Ray</topic><topic>Cytoplasm - metabolism</topic><topic>HeLa Cells</topic><topic>Histones - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mass Spectrometry - methods</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Surface Plasmon Resonance</topic><topic>TATA-Binding Protein Associated Factors - metabolism</topic><topic>Transcription Factor TFIID - chemistry</topic><topic>Transcription Factor TFIID - metabolism</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trowitzsch, Simon</creatorcontrib><creatorcontrib>Viola, Cristina</creatorcontrib><creatorcontrib>Scheer, Elisabeth</creatorcontrib><creatorcontrib>Conic, Sascha</creatorcontrib><creatorcontrib>Chavant, Virginie</creatorcontrib><creatorcontrib>Fournier, Marjorie</creatorcontrib><creatorcontrib>Papai, Gabor</creatorcontrib><creatorcontrib>Ebong, Ima-Obong</creatorcontrib><creatorcontrib>Schaffitzel, Christiane</creatorcontrib><creatorcontrib>Zou, Juan</creatorcontrib><creatorcontrib>Haffke, Matthias</creatorcontrib><creatorcontrib>Rappsilber, Juri</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><creatorcontrib>Schultz, Patrick</creatorcontrib><creatorcontrib>Tora, Laszlo</creatorcontrib><creatorcontrib>Berger, Imre</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trowitzsch, Simon</au><au>Viola, Cristina</au><au>Scheer, Elisabeth</au><au>Conic, Sascha</au><au>Chavant, Virginie</au><au>Fournier, Marjorie</au><au>Papai, Gabor</au><au>Ebong, Ima-Obong</au><au>Schaffitzel, Christiane</au><au>Zou, Juan</au><au>Haffke, Matthias</au><au>Rappsilber, Juri</au><au>Robinson, Carol V.</au><au>Schultz, Patrick</au><au>Tora, Laszlo</au><au>Berger, Imre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytoplasmic TAF2–TAF8–TAF10 complex provides evidence for nuclear holo–TFIID assembly from preformed submodules</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-01-14</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>6011</spage><epage>6011</epage><pages>6011-6011</pages><artnum>6011</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID—a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)—assembles into a functional transcription factor is poorly understood. Here we describe a heterotrimeric TFIID subcomplex consisting of the TAF2, TAF8 and TAF10 proteins, which assembles in the cytoplasm. Using native mass spectrometry, we define the interactions between the TAFs and uncover a central role for TAF8 in nucleating the complex. X-ray crystallography reveals a non-canonical arrangement of the TAF8–TAF10 histone fold domains. TAF2 binds to multiple motifs within the TAF8 C-terminal region, and these interactions dictate TAF2 incorporation into a core–TFIID complex that exists in the nucleus. Our results provide evidence for a stepwise assembly pathway of nuclear holo–TFIID, regulated by nuclear import of preformed cytoplasmic submodules. TFIID is an essential transcription factor complex that controls the expression of most protein-coding genes in eukaryotes. Here the authors identify and characterize a complex containing TAF2, TAF8 and TAF10, which assembles in the cytoplasm before integration into the nuclear holo–TFIID complex.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25586196</pmid><doi>10.1038/ncomms7011</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7829-5505</orcidid><orcidid>https://orcid.org/0000-0002-2779-8679</orcidid><orcidid>https://orcid.org/0000-0001-7398-2250</orcidid><orcidid>https://orcid.org/0000-0001-7518-9045</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-01, Vol.6 (1), p.6011-6011, Article 6011
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4309443
source PubMed Central(OpenAccess); Publicly Available Content (ProQuest); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 101/28
101/58
13/1
13/106
13/51
13/89
14/35
14/63
631/337/572
631/45/612/1229
631/45/612/822
631/80/389/2029
82/103
82/75
82/80
82/83
Amino Acid Motifs
Calorimetry
Cell Nucleus - metabolism
Crystallography, X-Ray
Cytoplasm - metabolism
HeLa Cells
Histones - chemistry
Humanities and Social Sciences
Humans
Life Sciences
Mass Spectrometry - methods
Models, Molecular
multidisciplinary
Protein Binding
Protein Multimerization
Protein Structure, Tertiary
Recombinant Proteins - metabolism
Science
Science (multidisciplinary)
Surface Plasmon Resonance
TATA-Binding Protein Associated Factors - metabolism
Transcription Factor TFIID - chemistry
Transcription Factor TFIID - metabolism
Transcription Factors - metabolism
title Cytoplasmic TAF2–TAF8–TAF10 complex provides evidence for nuclear holo–TFIID assembly from preformed submodules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T20%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytoplasmic%20TAF2%E2%80%93TAF8%E2%80%93TAF10%20complex%20provides%20evidence%20for%20nuclear%20holo%E2%80%93TFIID%20assembly%20from%20preformed%20submodules&rft.jtitle=Nature%20communications&rft.au=Trowitzsch,%20Simon&rft.date=2015-01-14&rft.volume=6&rft.issue=1&rft.spage=6011&rft.epage=6011&rft.pages=6011-6011&rft.artnum=6011&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms7011&rft_dat=%3Cproquest_pubme%3E1652401410%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-3b7f60d4f8260d6e436451be26a4991a0dbe73bef8d0e5959f3f5a2d51bbcb2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1645197580&rft_id=info:pmid/25586196&rfr_iscdi=true