Loading…
Two‐Dimensional Informative Array Testing
Array‐based group‐testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this article, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed‐form...
Saved in:
Published in: | Biometrics 2012-09, Vol.68 (3), p.793-804 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93 |
---|---|
cites | cdi_FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93 |
container_end_page | 804 |
container_issue | 3 |
container_start_page | 793 |
container_title | Biometrics |
container_volume | 68 |
creator | McMahan, Christopher S. Tebbs, Joshua M. Bilder, Christopher R. |
description | Array‐based group‐testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this article, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed‐form expressions for the expected number of tests (efficiency) and misclassification probabilities (sensitivity, specificity, predictive values) for two‐dimensional array testing in a heterogeneous population. We then propose two “informative” array construction techniques which exploit population heterogeneity in ways that can substantially improve testing efficiency when compared to classical approaches that regard the population as homogeneous. Furthermore, a useful byproduct of our methodology is that misclassification probabilities can be estimated on a per‐individual basis. We illustrate our new procedures using chlamydia and gonorrhea testing data collected in Nebraska as part of the Infertility Prevention Project. |
doi_str_mv | 10.1111/j.1541-0420.2011.01726.x |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4371870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23270597</jstor_id><sourcerecordid>23270597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93</originalsourceid><addsrcrecordid>eNqNUctuEzEUtRCIhsInAJHYIKEM16-xZ4PUtKUEQrtoKthdORNP8DAZFztpkx2fwDfyJXhISYENeGNfn3PPufYhpE8ho2m9rDMqBR2AYJAxoDQDqliere-Q3g64S3oAkA-4oB_3yIMY61QWEth9sscYowxA9ciLybX__vXbkVvYNjrfmqY_aisfFmbprmz_IASz6U9sXLp2_pDcq0wT7aObfZ9cvD6eHL4ZjM9ORocH40GZs2Q4pTNDAaZUlYYrLnjFC67SBS80aK1kkUrLGJ8JRUtdgMy11iBFauGmLPg-ebXVvVxNF3ZW2nYZTIOXwS1M2KA3Dv9EWvcJ5_4KBVdUK0gCz28Egv-ySsPjwsXSNo1prV9FpLnSMldSqX9TQVPBqchFoj77i1r7VUg_1rFUAbkUvGPpLasMPsZgq93cFLALD2vsMsIuI-zCw5_h4Tq1Pvn93bvGX2ndfsy1a-zmv4VxODp73x2TwOOtQB2XPtwacKZAFp3BYIu7uLTrHW7CZ8wVVxI_nJ7g-B19OxkOz_E08Z9u-ZXxaObBRbw4T9YSgArNheQ_AKPmx2s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1079065434</pqid></control><display><type>article</type><title>Two‐Dimensional Informative Array Testing</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><source>SPORTDiscus with Full Text</source><creator>McMahan, Christopher S. ; Tebbs, Joshua M. ; Bilder, Christopher R.</creator><creatorcontrib>McMahan, Christopher S. ; Tebbs, Joshua M. ; Bilder, Christopher R.</creatorcontrib><description>Array‐based group‐testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this article, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed‐form expressions for the expected number of tests (efficiency) and misclassification probabilities (sensitivity, specificity, predictive values) for two‐dimensional array testing in a heterogeneous population. We then propose two “informative” array construction techniques which exploit population heterogeneity in ways that can substantially improve testing efficiency when compared to classical approaches that regard the population as homogeneous. Furthermore, a useful byproduct of our methodology is that misclassification probabilities can be estimated on a per‐individual basis. We illustrate our new procedures using chlamydia and gonorrhea testing data collected in Nebraska as part of the Infertility Prevention Project.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2011.01726.x</identifier><identifier>PMID: 22212007</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Algorithms ; Arrays ; BIOMETRIC METHODOLOGY ; Biometrics ; Biometry ; Chlamydia ; Chlamydia Infections - diagnosis ; Design efficiency ; Diagnostic Errors - statistics & numerical data ; Disease screening ; drugs ; Efficiency ; Female ; genetics ; Gonorrhea ; Gonorrhea - diagnosis ; Group testing ; Humans ; Infections ; Infectious diseases ; Infertility - prevention & control ; Infertility Prevention Project ; Male ; Mass Screening - statistics & numerical data ; Matrix pooling ; Medical genetics ; Medical screening ; Models, Statistical ; Nebraska ; Pooled testing ; Probability ; Screening tests ; Specimens ; Testing ; Urine</subject><ispartof>Biometrics, 2012-09, Vol.68 (3), p.793-804</ispartof><rights>The International Biometric Society 2012</rights><rights>2011, The International Biometric Society</rights><rights>2011, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93</citedby><cites>FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23270597$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23270597$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,58221,58454</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22212007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McMahan, Christopher S.</creatorcontrib><creatorcontrib>Tebbs, Joshua M.</creatorcontrib><creatorcontrib>Bilder, Christopher R.</creatorcontrib><title>Two‐Dimensional Informative Array Testing</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Array‐based group‐testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this article, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed‐form expressions for the expected number of tests (efficiency) and misclassification probabilities (sensitivity, specificity, predictive values) for two‐dimensional array testing in a heterogeneous population. We then propose two “informative” array construction techniques which exploit population heterogeneity in ways that can substantially improve testing efficiency when compared to classical approaches that regard the population as homogeneous. Furthermore, a useful byproduct of our methodology is that misclassification probabilities can be estimated on a per‐individual basis. We illustrate our new procedures using chlamydia and gonorrhea testing data collected in Nebraska as part of the Infertility Prevention Project.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Chlamydia</subject><subject>Chlamydia Infections - diagnosis</subject><subject>Design efficiency</subject><subject>Diagnostic Errors - statistics & numerical data</subject><subject>Disease screening</subject><subject>drugs</subject><subject>Efficiency</subject><subject>Female</subject><subject>genetics</subject><subject>Gonorrhea</subject><subject>Gonorrhea - diagnosis</subject><subject>Group testing</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Infertility - prevention & control</subject><subject>Infertility Prevention Project</subject><subject>Male</subject><subject>Mass Screening - statistics & numerical data</subject><subject>Matrix pooling</subject><subject>Medical genetics</subject><subject>Medical screening</subject><subject>Models, Statistical</subject><subject>Nebraska</subject><subject>Pooled testing</subject><subject>Probability</subject><subject>Screening tests</subject><subject>Specimens</subject><subject>Testing</subject><subject>Urine</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNUctuEzEUtRCIhsInAJHYIKEM16-xZ4PUtKUEQrtoKthdORNP8DAZFztpkx2fwDfyJXhISYENeGNfn3PPufYhpE8ho2m9rDMqBR2AYJAxoDQDqliere-Q3g64S3oAkA-4oB_3yIMY61QWEth9sscYowxA9ciLybX__vXbkVvYNjrfmqY_aisfFmbprmz_IASz6U9sXLp2_pDcq0wT7aObfZ9cvD6eHL4ZjM9ORocH40GZs2Q4pTNDAaZUlYYrLnjFC67SBS80aK1kkUrLGJ8JRUtdgMy11iBFauGmLPg-ebXVvVxNF3ZW2nYZTIOXwS1M2KA3Dv9EWvcJ5_4KBVdUK0gCz28Egv-ySsPjwsXSNo1prV9FpLnSMldSqX9TQVPBqchFoj77i1r7VUg_1rFUAbkUvGPpLasMPsZgq93cFLALD2vsMsIuI-zCw5_h4Tq1Pvn93bvGX2ndfsy1a-zmv4VxODp73x2TwOOtQB2XPtwacKZAFp3BYIu7uLTrHW7CZ8wVVxI_nJ7g-B19OxkOz_E08Z9u-ZXxaObBRbw4T9YSgArNheQ_AKPmx2s</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>McMahan, Christopher S.</creator><creator>Tebbs, Joshua M.</creator><creator>Bilder, Christopher R.</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>201209</creationdate><title>Two‐Dimensional Informative Array Testing</title><author>McMahan, Christopher S. ; Tebbs, Joshua M. ; Bilder, Christopher R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Chlamydia</topic><topic>Chlamydia Infections - diagnosis</topic><topic>Design efficiency</topic><topic>Diagnostic Errors - statistics & numerical data</topic><topic>Disease screening</topic><topic>drugs</topic><topic>Efficiency</topic><topic>Female</topic><topic>genetics</topic><topic>Gonorrhea</topic><topic>Gonorrhea - diagnosis</topic><topic>Group testing</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Infertility - prevention & control</topic><topic>Infertility Prevention Project</topic><topic>Male</topic><topic>Mass Screening - statistics & numerical data</topic><topic>Matrix pooling</topic><topic>Medical genetics</topic><topic>Medical screening</topic><topic>Models, Statistical</topic><topic>Nebraska</topic><topic>Pooled testing</topic><topic>Probability</topic><topic>Screening tests</topic><topic>Specimens</topic><topic>Testing</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McMahan, Christopher S.</creatorcontrib><creatorcontrib>Tebbs, Joshua M.</creatorcontrib><creatorcontrib>Bilder, Christopher R.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McMahan, Christopher S.</au><au>Tebbs, Joshua M.</au><au>Bilder, Christopher R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two‐Dimensional Informative Array Testing</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2012-09</date><risdate>2012</risdate><volume>68</volume><issue>3</issue><spage>793</spage><epage>804</epage><pages>793-804</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Array‐based group‐testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this article, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed‐form expressions for the expected number of tests (efficiency) and misclassification probabilities (sensitivity, specificity, predictive values) for two‐dimensional array testing in a heterogeneous population. We then propose two “informative” array construction techniques which exploit population heterogeneity in ways that can substantially improve testing efficiency when compared to classical approaches that regard the population as homogeneous. Furthermore, a useful byproduct of our methodology is that misclassification probabilities can be estimated on a per‐individual basis. We illustrate our new procedures using chlamydia and gonorrhea testing data collected in Nebraska as part of the Infertility Prevention Project.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>22212007</pmid><doi>10.1111/j.1541-0420.2011.01726.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2012-09, Vol.68 (3), p.793-804 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4371870 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online; SPORTDiscus with Full Text |
subjects | Algorithms Arrays BIOMETRIC METHODOLOGY Biometrics Biometry Chlamydia Chlamydia Infections - diagnosis Design efficiency Diagnostic Errors - statistics & numerical data Disease screening drugs Efficiency Female genetics Gonorrhea Gonorrhea - diagnosis Group testing Humans Infections Infectious diseases Infertility - prevention & control Infertility Prevention Project Male Mass Screening - statistics & numerical data Matrix pooling Medical genetics Medical screening Models, Statistical Nebraska Pooled testing Probability Screening tests Specimens Testing Urine |
title | Two‐Dimensional Informative Array Testing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%E2%80%90Dimensional%20Informative%20Array%20Testing&rft.jtitle=Biometrics&rft.au=McMahan,%20Christopher%20S.&rft.date=2012-09&rft.volume=68&rft.issue=3&rft.spage=793&rft.epage=804&rft.pages=793-804&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2011.01726.x&rft_dat=%3Cjstor_pubme%3E23270597%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1079065434&rft_id=info:pmid/22212007&rft_jstor_id=23270597&rfr_iscdi=true |