Loading…

Two‐Dimensional Informative Array Testing

Array‐based group‐testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this article, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed‐form...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics 2012-09, Vol.68 (3), p.793-804
Main Authors: McMahan, Christopher S., Tebbs, Joshua M., Bilder, Christopher R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93
cites cdi_FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93
container_end_page 804
container_issue 3
container_start_page 793
container_title Biometrics
container_volume 68
creator McMahan, Christopher S.
Tebbs, Joshua M.
Bilder, Christopher R.
description Array‐based group‐testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this article, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed‐form expressions for the expected number of tests (efficiency) and misclassification probabilities (sensitivity, specificity, predictive values) for two‐dimensional array testing in a heterogeneous population. We then propose two “informative” array construction techniques which exploit population heterogeneity in ways that can substantially improve testing efficiency when compared to classical approaches that regard the population as homogeneous. Furthermore, a useful byproduct of our methodology is that misclassification probabilities can be estimated on a per‐individual basis. We illustrate our new procedures using chlamydia and gonorrhea testing data collected in Nebraska as part of the Infertility Prevention Project.
doi_str_mv 10.1111/j.1541-0420.2011.01726.x
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4371870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23270597</jstor_id><sourcerecordid>23270597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93</originalsourceid><addsrcrecordid>eNqNUctuEzEUtRCIhsInAJHYIKEM16-xZ4PUtKUEQrtoKthdORNP8DAZFztpkx2fwDfyJXhISYENeGNfn3PPufYhpE8ho2m9rDMqBR2AYJAxoDQDqliere-Q3g64S3oAkA-4oB_3yIMY61QWEth9sscYowxA9ciLybX__vXbkVvYNjrfmqY_aisfFmbprmz_IASz6U9sXLp2_pDcq0wT7aObfZ9cvD6eHL4ZjM9ORocH40GZs2Q4pTNDAaZUlYYrLnjFC67SBS80aK1kkUrLGJ8JRUtdgMy11iBFauGmLPg-ebXVvVxNF3ZW2nYZTIOXwS1M2KA3Dv9EWvcJ5_4KBVdUK0gCz28Egv-ySsPjwsXSNo1prV9FpLnSMldSqX9TQVPBqchFoj77i1r7VUg_1rFUAbkUvGPpLasMPsZgq93cFLALD2vsMsIuI-zCw5_h4Tq1Pvn93bvGX2ndfsy1a-zmv4VxODp73x2TwOOtQB2XPtwacKZAFp3BYIu7uLTrHW7CZ8wVVxI_nJ7g-B19OxkOz_E08Z9u-ZXxaObBRbw4T9YSgArNheQ_AKPmx2s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1079065434</pqid></control><display><type>article</type><title>Two‐Dimensional Informative Array Testing</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><source>SPORTDiscus with Full Text</source><creator>McMahan, Christopher S. ; Tebbs, Joshua M. ; Bilder, Christopher R.</creator><creatorcontrib>McMahan, Christopher S. ; Tebbs, Joshua M. ; Bilder, Christopher R.</creatorcontrib><description>Array‐based group‐testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this article, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed‐form expressions for the expected number of tests (efficiency) and misclassification probabilities (sensitivity, specificity, predictive values) for two‐dimensional array testing in a heterogeneous population. We then propose two “informative” array construction techniques which exploit population heterogeneity in ways that can substantially improve testing efficiency when compared to classical approaches that regard the population as homogeneous. Furthermore, a useful byproduct of our methodology is that misclassification probabilities can be estimated on a per‐individual basis. We illustrate our new procedures using chlamydia and gonorrhea testing data collected in Nebraska as part of the Infertility Prevention Project.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2011.01726.x</identifier><identifier>PMID: 22212007</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Algorithms ; Arrays ; BIOMETRIC METHODOLOGY ; Biometrics ; Biometry ; Chlamydia ; Chlamydia Infections - diagnosis ; Design efficiency ; Diagnostic Errors - statistics &amp; numerical data ; Disease screening ; drugs ; Efficiency ; Female ; genetics ; Gonorrhea ; Gonorrhea - diagnosis ; Group testing ; Humans ; Infections ; Infectious diseases ; Infertility - prevention &amp; control ; Infertility Prevention Project ; Male ; Mass Screening - statistics &amp; numerical data ; Matrix pooling ; Medical genetics ; Medical screening ; Models, Statistical ; Nebraska ; Pooled testing ; Probability ; Screening tests ; Specimens ; Testing ; Urine</subject><ispartof>Biometrics, 2012-09, Vol.68 (3), p.793-804</ispartof><rights>The International Biometric Society 2012</rights><rights>2011, The International Biometric Society</rights><rights>2011, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93</citedby><cites>FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23270597$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23270597$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,58221,58454</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22212007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McMahan, Christopher S.</creatorcontrib><creatorcontrib>Tebbs, Joshua M.</creatorcontrib><creatorcontrib>Bilder, Christopher R.</creatorcontrib><title>Two‐Dimensional Informative Array Testing</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Array‐based group‐testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this article, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed‐form expressions for the expected number of tests (efficiency) and misclassification probabilities (sensitivity, specificity, predictive values) for two‐dimensional array testing in a heterogeneous population. We then propose two “informative” array construction techniques which exploit population heterogeneity in ways that can substantially improve testing efficiency when compared to classical approaches that regard the population as homogeneous. Furthermore, a useful byproduct of our methodology is that misclassification probabilities can be estimated on a per‐individual basis. We illustrate our new procedures using chlamydia and gonorrhea testing data collected in Nebraska as part of the Infertility Prevention Project.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Chlamydia</subject><subject>Chlamydia Infections - diagnosis</subject><subject>Design efficiency</subject><subject>Diagnostic Errors - statistics &amp; numerical data</subject><subject>Disease screening</subject><subject>drugs</subject><subject>Efficiency</subject><subject>Female</subject><subject>genetics</subject><subject>Gonorrhea</subject><subject>Gonorrhea - diagnosis</subject><subject>Group testing</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Infertility - prevention &amp; control</subject><subject>Infertility Prevention Project</subject><subject>Male</subject><subject>Mass Screening - statistics &amp; numerical data</subject><subject>Matrix pooling</subject><subject>Medical genetics</subject><subject>Medical screening</subject><subject>Models, Statistical</subject><subject>Nebraska</subject><subject>Pooled testing</subject><subject>Probability</subject><subject>Screening tests</subject><subject>Specimens</subject><subject>Testing</subject><subject>Urine</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNUctuEzEUtRCIhsInAJHYIKEM16-xZ4PUtKUEQrtoKthdORNP8DAZFztpkx2fwDfyJXhISYENeGNfn3PPufYhpE8ho2m9rDMqBR2AYJAxoDQDqliere-Q3g64S3oAkA-4oB_3yIMY61QWEth9sscYowxA9ciLybX__vXbkVvYNjrfmqY_aisfFmbprmz_IASz6U9sXLp2_pDcq0wT7aObfZ9cvD6eHL4ZjM9ORocH40GZs2Q4pTNDAaZUlYYrLnjFC67SBS80aK1kkUrLGJ8JRUtdgMy11iBFauGmLPg-ebXVvVxNF3ZW2nYZTIOXwS1M2KA3Dv9EWvcJ5_4KBVdUK0gCz28Egv-ySsPjwsXSNo1prV9FpLnSMldSqX9TQVPBqchFoj77i1r7VUg_1rFUAbkUvGPpLasMPsZgq93cFLALD2vsMsIuI-zCw5_h4Tq1Pvn93bvGX2ndfsy1a-zmv4VxODp73x2TwOOtQB2XPtwacKZAFp3BYIu7uLTrHW7CZ8wVVxI_nJ7g-B19OxkOz_E08Z9u-ZXxaObBRbw4T9YSgArNheQ_AKPmx2s</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>McMahan, Christopher S.</creator><creator>Tebbs, Joshua M.</creator><creator>Bilder, Christopher R.</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>201209</creationdate><title>Two‐Dimensional Informative Array Testing</title><author>McMahan, Christopher S. ; Tebbs, Joshua M. ; Bilder, Christopher R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Chlamydia</topic><topic>Chlamydia Infections - diagnosis</topic><topic>Design efficiency</topic><topic>Diagnostic Errors - statistics &amp; numerical data</topic><topic>Disease screening</topic><topic>drugs</topic><topic>Efficiency</topic><topic>Female</topic><topic>genetics</topic><topic>Gonorrhea</topic><topic>Gonorrhea - diagnosis</topic><topic>Group testing</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Infertility - prevention &amp; control</topic><topic>Infertility Prevention Project</topic><topic>Male</topic><topic>Mass Screening - statistics &amp; numerical data</topic><topic>Matrix pooling</topic><topic>Medical genetics</topic><topic>Medical screening</topic><topic>Models, Statistical</topic><topic>Nebraska</topic><topic>Pooled testing</topic><topic>Probability</topic><topic>Screening tests</topic><topic>Specimens</topic><topic>Testing</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McMahan, Christopher S.</creatorcontrib><creatorcontrib>Tebbs, Joshua M.</creatorcontrib><creatorcontrib>Bilder, Christopher R.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McMahan, Christopher S.</au><au>Tebbs, Joshua M.</au><au>Bilder, Christopher R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two‐Dimensional Informative Array Testing</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2012-09</date><risdate>2012</risdate><volume>68</volume><issue>3</issue><spage>793</spage><epage>804</epage><pages>793-804</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Array‐based group‐testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this article, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed‐form expressions for the expected number of tests (efficiency) and misclassification probabilities (sensitivity, specificity, predictive values) for two‐dimensional array testing in a heterogeneous population. We then propose two “informative” array construction techniques which exploit population heterogeneity in ways that can substantially improve testing efficiency when compared to classical approaches that regard the population as homogeneous. Furthermore, a useful byproduct of our methodology is that misclassification probabilities can be estimated on a per‐individual basis. We illustrate our new procedures using chlamydia and gonorrhea testing data collected in Nebraska as part of the Infertility Prevention Project.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>22212007</pmid><doi>10.1111/j.1541-0420.2011.01726.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2012-09, Vol.68 (3), p.793-804
issn 0006-341X
1541-0420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4371870
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online; SPORTDiscus with Full Text
subjects Algorithms
Arrays
BIOMETRIC METHODOLOGY
Biometrics
Biometry
Chlamydia
Chlamydia Infections - diagnosis
Design efficiency
Diagnostic Errors - statistics & numerical data
Disease screening
drugs
Efficiency
Female
genetics
Gonorrhea
Gonorrhea - diagnosis
Group testing
Humans
Infections
Infectious diseases
Infertility - prevention & control
Infertility Prevention Project
Male
Mass Screening - statistics & numerical data
Matrix pooling
Medical genetics
Medical screening
Models, Statistical
Nebraska
Pooled testing
Probability
Screening tests
Specimens
Testing
Urine
title Two‐Dimensional Informative Array Testing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%E2%80%90Dimensional%20Informative%20Array%20Testing&rft.jtitle=Biometrics&rft.au=McMahan,%20Christopher%20S.&rft.date=2012-09&rft.volume=68&rft.issue=3&rft.spage=793&rft.epage=804&rft.pages=793-804&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2011.01726.x&rft_dat=%3Cjstor_pubme%3E23270597%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6206-b1da100b17ca37343f393700b398088759937e223d471c890568880540b13ac93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1079065434&rft_id=info:pmid/22212007&rft_jstor_id=23270597&rfr_iscdi=true