Loading…
hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1
A method, termed hiCLIP, has been developed to determine the RNA duplexes bound by RNA-binding proteins, revealing an unforeseen prevalence of long-range duplexes in 3′ untranslated regions (UTRs), and a decreased incidence of SNPs in duplex-forming regions; the results also show that RNA structure...
Saved in:
Published in: | Nature (London) 2015-03, Vol.519 (7544), p.491-494 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A method, termed hiCLIP, has been developed to determine the RNA duplexes bound by RNA-binding proteins, revealing an unforeseen prevalence of long-range duplexes in 3′ untranslated regions (UTRs), and a decreased incidence of SNPs in duplex-forming regions; the results also show that RNA structure is able to regulate gene expression.
Probing native RNA structure
The single-stranded nature of cellular RNAs allows them flexibility to adopt different secondary structures that can affect their function. However, current methods of measuring RNA structure
in vivo
are limited. Two papers published in this week's issue of
Nature
present new techniques to address this gap. Howard Chang and colleagues have exploited a click methodology that enables the first global view of RNA secondary structures in living cells for all four bases. While some structures are stable and seem to be programmed by sequence, others are dynamic, reflecting the binding of proteins or modification of the bases. This method may allow RNA to be analysed
in vivo
from a structural genomics perspective. In the second study, Jernej Ule and colleagues have developed a method, hiCLIP, to specifically measure RNA structures bound by proteins. Various features are observed, such as a preference for intramolecular interactions and an under-representation of structures in coding regions. The results confirm that RNA structure is able to regulate gene expression. While the functional significance is not known, it is notable that SNPs are not present at the expected frequency in coding regions.
The structure of messenger RNA is important for post-transcriptional regulation, mainly because it affects binding of
trans
-acting factors
1
. However, little is known about the
in vivo
structure of full-length mRNAs. Here we present hiCLIP, a biochemical technique for transcriptome-wide identification of RNA secondary structures interacting with RNA-binding proteins (RBPs). Using this technique to investigate RNA structures bound by Staufen 1 (STAU1) in human cells, we uncover a dominance of intra-molecular RNA duplexes, a depletion of duplexes from coding regions of highly translated mRNAs, an unexpected prevalence of long-range duplexes in 3′ untranslated regions (UTRs), and a decreased incidence of single nucleotide polymorphisms in duplex-forming regions. We also discover a duplex spanning 858 nucleotides in the 3′ UTR of the X-box binding protein 1 (
XBP1
) mRNA that regulates its cytoplasmic splicing and |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/nature14280 |