Loading…

Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum

Among the many neuromodulators used by the mammalian brain to regulate circuit function and plasticity, dopamine (DA) stands out as one of the most behaviorally powerful. Perturbations of DA signaling are implicated in the pathogenesis or exploited in the treatment of many neuropsychiatric diseases,...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2012-10, Vol.76 (1), p.33-50
Main Authors: Tritsch, Nicolas X., Sabatini, Bernardo L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c641t-9606e37b76588725beae87481ab71cda173c260a7662a1a8cc710a89e4994ea3
cites cdi_FETCH-LOGICAL-c641t-9606e37b76588725beae87481ab71cda173c260a7662a1a8cc710a89e4994ea3
container_end_page 50
container_issue 1
container_start_page 33
container_title Neuron (Cambridge, Mass.)
container_volume 76
creator Tritsch, Nicolas X.
Sabatini, Bernardo L.
description Among the many neuromodulators used by the mammalian brain to regulate circuit function and plasticity, dopamine (DA) stands out as one of the most behaviorally powerful. Perturbations of DA signaling are implicated in the pathogenesis or exploited in the treatment of many neuropsychiatric diseases, including Parkinson’s disease (PD), addiction, schizophrenia, obsessive compulsive disorder, and Tourette’s syndrome. Although the precise mechanisms employed by DA to exert its control over behavior are not fully understood, DA is known to regulate many electrical and biochemical aspects of neuronal function including excitability, synaptic transmission, integration and plasticity, protein trafficking, and gene transcription. In this Review, we discuss the actions of DA on ionic and synaptic signaling in neurons of the prefrontal cortex and striatum, brain areas in which dopaminergic dysfunction is thought to be central to disease. Dopamine (DA) regulates many aspects of neuronal function. In this Review, Tritsch and Sabatini discuss the actions of DA on neuronal signaling in the prefrontal cortex and striatum, brain areas in which dopaminergic dysfunction is thought to be central to disease.
doi_str_mv 10.1016/j.neuron.2012.09.023
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4386589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627312008586</els_id><sourcerecordid>3235643061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-9606e37b76588725beae87481ab71cda173c260a7662a1a8cc710a89e4994ea3</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRCILoV_gFAkLlwSZmInti9IaIGCVMShe7e8zmzxKrEXO6nov8erLeXjAKeRZt68N_MeY88RGgTsX--bQEuKoWkB2wZ0Ay1_wFYIWtYCtX7IVqB0X_et5GfsSc57ABSdxsfsrOUgQEG3Yhfv4sFOPlC69q76HIdltLOPoYq76uo22MNc2ptkQ558zseBD9U6ppm-VzYM1dWcvJ2X6Sl7tLNjpmd39ZxtPrzfrD_Wl18uPq3fXtauFzjXuoeeuNzKvlNKtt2WLCkpFNqtRDdYlNy1PVjZ961Fq5yTCFZpEloLsvycvTnRHpbtRIOjMCc7mkPyk023Jlpv_pwE_9VcxxsjuCqSuhC8uiNI8dtCeTblL0fjaAPFJRtE5C0WUfw_FHQnOpRKFujLv6D7uKRQjDDYAVdCcg4FJU4ol2LOiXb3dyOYY6Zmb06ZmmOmBrQpmZa1F7__fL_0M8RfplAx_sZTMtl5Co4Gn8jNZoj-3wo_APObtFY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503847330</pqid></control><display><type>article</type><title>Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Tritsch, Nicolas X. ; Sabatini, Bernardo L.</creator><creatorcontrib>Tritsch, Nicolas X. ; Sabatini, Bernardo L.</creatorcontrib><description>Among the many neuromodulators used by the mammalian brain to regulate circuit function and plasticity, dopamine (DA) stands out as one of the most behaviorally powerful. Perturbations of DA signaling are implicated in the pathogenesis or exploited in the treatment of many neuropsychiatric diseases, including Parkinson’s disease (PD), addiction, schizophrenia, obsessive compulsive disorder, and Tourette’s syndrome. Although the precise mechanisms employed by DA to exert its control over behavior are not fully understood, DA is known to regulate many electrical and biochemical aspects of neuronal function including excitability, synaptic transmission, integration and plasticity, protein trafficking, and gene transcription. In this Review, we discuss the actions of DA on ionic and synaptic signaling in neurons of the prefrontal cortex and striatum, brain areas in which dopaminergic dysfunction is thought to be central to disease. Dopamine (DA) regulates many aspects of neuronal function. In this Review, Tritsch and Sabatini discuss the actions of DA on neuronal signaling in the prefrontal cortex and striatum, brain areas in which dopaminergic dysfunction is thought to be central to disease.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2012.09.023</identifier><identifier>PMID: 23040805</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Brain ; Brain - physiology ; Circuits ; Cortex (prefrontal) ; Dopamine ; Dopamine - metabolism ; Excitability ; Gilles de la Tourette syndrome ; Humans ; Influence ; Integration ; Kinases ; Mental disorders ; Movement disorders ; Neostriatum ; Neurodegenerative diseases ; Neuromodulation ; Neurons ; Neurons - metabolism ; Obsessive compulsive disorder ; Parkinson's disease ; Plasticity (synaptic) ; Protein transport ; Schizophrenia ; Studies ; Synaptic transmission ; Synaptic Transmission - physiology ; Transcription</subject><ispartof>Neuron (Cambridge, Mass.), 2012-10, Vol.76 (1), p.33-50</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Oct 4, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-9606e37b76588725beae87481ab71cda173c260a7662a1a8cc710a89e4994ea3</citedby><cites>FETCH-LOGICAL-c641t-9606e37b76588725beae87481ab71cda173c260a7662a1a8cc710a89e4994ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23040805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tritsch, Nicolas X.</creatorcontrib><creatorcontrib>Sabatini, Bernardo L.</creatorcontrib><title>Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Among the many neuromodulators used by the mammalian brain to regulate circuit function and plasticity, dopamine (DA) stands out as one of the most behaviorally powerful. Perturbations of DA signaling are implicated in the pathogenesis or exploited in the treatment of many neuropsychiatric diseases, including Parkinson’s disease (PD), addiction, schizophrenia, obsessive compulsive disorder, and Tourette’s syndrome. Although the precise mechanisms employed by DA to exert its control over behavior are not fully understood, DA is known to regulate many electrical and biochemical aspects of neuronal function including excitability, synaptic transmission, integration and plasticity, protein trafficking, and gene transcription. In this Review, we discuss the actions of DA on ionic and synaptic signaling in neurons of the prefrontal cortex and striatum, brain areas in which dopaminergic dysfunction is thought to be central to disease. Dopamine (DA) regulates many aspects of neuronal function. In this Review, Tritsch and Sabatini discuss the actions of DA on neuronal signaling in the prefrontal cortex and striatum, brain areas in which dopaminergic dysfunction is thought to be central to disease.</description><subject>Animals</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Circuits</subject><subject>Cortex (prefrontal)</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Excitability</subject><subject>Gilles de la Tourette syndrome</subject><subject>Humans</subject><subject>Influence</subject><subject>Integration</subject><subject>Kinases</subject><subject>Mental disorders</subject><subject>Movement disorders</subject><subject>Neostriatum</subject><subject>Neurodegenerative diseases</subject><subject>Neuromodulation</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Obsessive compulsive disorder</subject><subject>Parkinson's disease</subject><subject>Plasticity (synaptic)</subject><subject>Protein transport</subject><subject>Schizophrenia</subject><subject>Studies</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><subject>Transcription</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFUU1v1DAQtRCILoV_gFAkLlwSZmInti9IaIGCVMShe7e8zmzxKrEXO6nov8erLeXjAKeRZt68N_MeY88RGgTsX--bQEuKoWkB2wZ0Ay1_wFYIWtYCtX7IVqB0X_et5GfsSc57ABSdxsfsrOUgQEG3Yhfv4sFOPlC69q76HIdltLOPoYq76uo22MNc2ptkQ558zseBD9U6ppm-VzYM1dWcvJ2X6Sl7tLNjpmd39ZxtPrzfrD_Wl18uPq3fXtauFzjXuoeeuNzKvlNKtt2WLCkpFNqtRDdYlNy1PVjZ961Fq5yTCFZpEloLsvycvTnRHpbtRIOjMCc7mkPyk023Jlpv_pwE_9VcxxsjuCqSuhC8uiNI8dtCeTblL0fjaAPFJRtE5C0WUfw_FHQnOpRKFujLv6D7uKRQjDDYAVdCcg4FJU4ol2LOiXb3dyOYY6Zmb06ZmmOmBrQpmZa1F7__fL_0M8RfplAx_sZTMtl5Co4Gn8jNZoj-3wo_APObtFY</recordid><startdate>20121004</startdate><enddate>20121004</enddate><creator>Tritsch, Nicolas X.</creator><creator>Sabatini, Bernardo L.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121004</creationdate><title>Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum</title><author>Tritsch, Nicolas X. ; Sabatini, Bernardo L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-9606e37b76588725beae87481ab71cda173c260a7662a1a8cc710a89e4994ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Circuits</topic><topic>Cortex (prefrontal)</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Excitability</topic><topic>Gilles de la Tourette syndrome</topic><topic>Humans</topic><topic>Influence</topic><topic>Integration</topic><topic>Kinases</topic><topic>Mental disorders</topic><topic>Movement disorders</topic><topic>Neostriatum</topic><topic>Neurodegenerative diseases</topic><topic>Neuromodulation</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Obsessive compulsive disorder</topic><topic>Parkinson's disease</topic><topic>Plasticity (synaptic)</topic><topic>Protein transport</topic><topic>Schizophrenia</topic><topic>Studies</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tritsch, Nicolas X.</creatorcontrib><creatorcontrib>Sabatini, Bernardo L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tritsch, Nicolas X.</au><au>Sabatini, Bernardo L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2012-10-04</date><risdate>2012</risdate><volume>76</volume><issue>1</issue><spage>33</spage><epage>50</epage><pages>33-50</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Among the many neuromodulators used by the mammalian brain to regulate circuit function and plasticity, dopamine (DA) stands out as one of the most behaviorally powerful. Perturbations of DA signaling are implicated in the pathogenesis or exploited in the treatment of many neuropsychiatric diseases, including Parkinson’s disease (PD), addiction, schizophrenia, obsessive compulsive disorder, and Tourette’s syndrome. Although the precise mechanisms employed by DA to exert its control over behavior are not fully understood, DA is known to regulate many electrical and biochemical aspects of neuronal function including excitability, synaptic transmission, integration and plasticity, protein trafficking, and gene transcription. In this Review, we discuss the actions of DA on ionic and synaptic signaling in neurons of the prefrontal cortex and striatum, brain areas in which dopaminergic dysfunction is thought to be central to disease. Dopamine (DA) regulates many aspects of neuronal function. In this Review, Tritsch and Sabatini discuss the actions of DA on neuronal signaling in the prefrontal cortex and striatum, brain areas in which dopaminergic dysfunction is thought to be central to disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23040805</pmid><doi>10.1016/j.neuron.2012.09.023</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2012-10, Vol.76 (1), p.33-50
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4386589
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Brain
Brain - physiology
Circuits
Cortex (prefrontal)
Dopamine
Dopamine - metabolism
Excitability
Gilles de la Tourette syndrome
Humans
Influence
Integration
Kinases
Mental disorders
Movement disorders
Neostriatum
Neurodegenerative diseases
Neuromodulation
Neurons
Neurons - metabolism
Obsessive compulsive disorder
Parkinson's disease
Plasticity (synaptic)
Protein transport
Schizophrenia
Studies
Synaptic transmission
Synaptic Transmission - physiology
Transcription
title Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopaminergic%20Modulation%20of%20Synaptic%20Transmission%20in%20Cortex%20and%20Striatum&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Tritsch,%20Nicolas%C2%A0X.&rft.date=2012-10-04&rft.volume=76&rft.issue=1&rft.spage=33&rft.epage=50&rft.pages=33-50&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2012.09.023&rft_dat=%3Cproquest_pubme%3E3235643061%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c641t-9606e37b76588725beae87481ab71cda173c260a7662a1a8cc710a89e4994ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503847330&rft_id=info:pmid/23040805&rfr_iscdi=true