Loading…

Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells

Neural crest cells (NCC) comprise a multipotent, migratory stem cell and progenitor population that gives rise to numerous cell and tissue types within a developing embryo, including craniofacial bone and cartilage, neurons and glia of the peripheral nervous system, and melanocytes within the skin....

Full description

Saved in:
Bibliographic Details
Published in:Developmental biology 2015-06, Vol.402 (1), p.3-16
Main Authors: Aoto, Kazushi, Sandell, Lisa L., Butler Tjaden, Naomi E., Yuen, Kobe C., Watt, Kristin E. Noack, Black, Brian L., Durnin, Michael, Trainor, Paul A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-c36fdb978bc228d0a721ccf09d4363f6bb4f84aff804757918e4bd2cb1f3fe063
cites cdi_FETCH-LOGICAL-c529t-c36fdb978bc228d0a721ccf09d4363f6bb4f84aff804757918e4bd2cb1f3fe063
container_end_page 16
container_issue 1
container_start_page 3
container_title Developmental biology
container_volume 402
creator Aoto, Kazushi
Sandell, Lisa L.
Butler Tjaden, Naomi E.
Yuen, Kobe C.
Watt, Kristin E. Noack
Black, Brian L.
Durnin, Michael
Trainor, Paul A.
description Neural crest cells (NCC) comprise a multipotent, migratory stem cell and progenitor population that gives rise to numerous cell and tissue types within a developing embryo, including craniofacial bone and cartilage, neurons and glia of the peripheral nervous system, and melanocytes within the skin. Here we describe two novel stable transgenic mouse lines suitable for lineage tracing and analysis of gene function in NCC. Firstly, using the F10N enhancer of the Mef2c gene (Mef2c-F10N) linked to LacZ, we generated transgenic mice (Mef2c-F10N-LacZ) that express LacZ in the majority, if not all migrating NCC that delaminate from the neural tube. Mef2c-F10N-LacZ then continues to be expressed primarily in neurogenic, gliogenic and melanocytic NCC and their derivatives, but not in ectomesenchymal derivatives. Secondly, we used the same Mef2c-F10N enhancer together with Cre recombinase to generate transgenic mice (Mef2c-F10N-Cre) that can be used to indelibly label, or alter gene function in, migrating NCC and their derivatives. At early stages of development, Mef2c-F10N-LacZ and Mef2c-F10N-Cre label NCC in a pattern similar to Wnt1-Cre mice, with the exception that Mef2c-F10N-LacZ and Mef2c-F10N-Cre specifically label NCC that have delaminated from the neural plate, while premigratory NCC are not labeled. Thus, our Mef2c-F10N-LacZ and Mef2c-F10N-Cre transgenic mice provide new resources for tracing migratory NCC and analyzing gene function in migrating and differentiating NCC independently of NCC formation. •The Mef2c-F10N enhancer is expressed in neural crest cells (NCC).•The Mef2c-F10N enhancer was used to establish new tools and resources for studying NCC development and function.•We describe Mef2c-F10N-LacZ and Mef2c-F10N-Cre stable transgenic mouse lines.•These lines mice facilitate tracing migratory NCC.•These lines allow for analyzing gene function in migrating and differentiating NCC independently of NCC formation.
doi_str_mv 10.1016/j.ydbio.2015.02.022
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4433593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160615001153</els_id><sourcerecordid>1681259246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-c36fdb978bc228d0a721ccf09d4363f6bb4f84aff804757918e4bd2cb1f3fe063</originalsourceid><addsrcrecordid>eNp9UU2KFDEUDqI47egJBMlyXFSbv0pVLRSkcVRodaMgbkIqeelJU5WMSVVDn8R7eBDPZGp6HHQjPMjifX8vH0JPKVlTQuWL_fpoex_XjNB6TVgZdg-tKOnqqpbi6320IoSyikoiz9CjnPeEEN62_CE6Y3XTCdm0K_TjAzhmqktKPmIIVzoYSNgmf4CAf_2sdnrQZorZW50BX2y1-fYc62DxJgFOYOLY-7CsRm8AO2384Cc9QcHo4Zgh4-jwDkLZzcFMPoYb9uAD6N1CKFAfcIA56QGbBHnCBoYhP0YPnB4yPLl9z9GXyzefN--q7ae37zevt5WpWTdVhktn-65pe8NYa4luGDXGkc4KLrmTfS9cK7RzLRFNOZq2IHrLTE8dd0AkP0evTrrXcz-CNRCmkkRdJz_qdFRRe_XvJvgrtYsHJQTndceLwMWtQIrf55JfjT4vJ-gAcc6KypayumNi8eInqEkx5wTuzoYStVSq9uqmUrVUqggrwwrr2d8J7zh_OiyAlycAlH86eEgqGw-lSOtLQ5Oy0f_X4DfiBbct</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681259246</pqid></control><display><type>article</type><title>Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells</title><source>ScienceDirect Journals</source><creator>Aoto, Kazushi ; Sandell, Lisa L. ; Butler Tjaden, Naomi E. ; Yuen, Kobe C. ; Watt, Kristin E. Noack ; Black, Brian L. ; Durnin, Michael ; Trainor, Paul A.</creator><creatorcontrib>Aoto, Kazushi ; Sandell, Lisa L. ; Butler Tjaden, Naomi E. ; Yuen, Kobe C. ; Watt, Kristin E. Noack ; Black, Brian L. ; Durnin, Michael ; Trainor, Paul A.</creatorcontrib><description>Neural crest cells (NCC) comprise a multipotent, migratory stem cell and progenitor population that gives rise to numerous cell and tissue types within a developing embryo, including craniofacial bone and cartilage, neurons and glia of the peripheral nervous system, and melanocytes within the skin. Here we describe two novel stable transgenic mouse lines suitable for lineage tracing and analysis of gene function in NCC. Firstly, using the F10N enhancer of the Mef2c gene (Mef2c-F10N) linked to LacZ, we generated transgenic mice (Mef2c-F10N-LacZ) that express LacZ in the majority, if not all migrating NCC that delaminate from the neural tube. Mef2c-F10N-LacZ then continues to be expressed primarily in neurogenic, gliogenic and melanocytic NCC and their derivatives, but not in ectomesenchymal derivatives. Secondly, we used the same Mef2c-F10N enhancer together with Cre recombinase to generate transgenic mice (Mef2c-F10N-Cre) that can be used to indelibly label, or alter gene function in, migrating NCC and their derivatives. At early stages of development, Mef2c-F10N-LacZ and Mef2c-F10N-Cre label NCC in a pattern similar to Wnt1-Cre mice, with the exception that Mef2c-F10N-LacZ and Mef2c-F10N-Cre specifically label NCC that have delaminated from the neural plate, while premigratory NCC are not labeled. Thus, our Mef2c-F10N-LacZ and Mef2c-F10N-Cre transgenic mice provide new resources for tracing migratory NCC and analyzing gene function in migrating and differentiating NCC independently of NCC formation. •The Mef2c-F10N enhancer is expressed in neural crest cells (NCC).•The Mef2c-F10N enhancer was used to establish new tools and resources for studying NCC development and function.•We describe Mef2c-F10N-LacZ and Mef2c-F10N-Cre stable transgenic mouse lines.•These lines mice facilitate tracing migratory NCC.•These lines allow for analyzing gene function in migrating and differentiating NCC independently of NCC formation.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2015.02.022</identifier><identifier>PMID: 25794678</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Differentiation ; Cell Lineage ; Cell Movement ; Chickens ; Cre recombinase ; Enhancer Elements, Genetic ; Gene Expression Regulation, Developmental ; Genotype ; Humans ; Integrases - genetics ; Integrases - metabolism ; Lac Operon ; Mef2C enhancer (Mef2c-F10N) ; Melanocytes - cytology ; Mesoderm - metabolism ; Mice ; Mice, Transgenic ; Neural Crest - cytology ; Neural Crest - metabolism ; Neural crest cell ; Neurons - metabolism ; Rabbits ; Rats ; Xenopus ; Zebrafish ; β-galactosidase reporter (LacZ)</subject><ispartof>Developmental biology, 2015-06, Vol.402 (1), p.3-16</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>2015 Published by Elsevier Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-c36fdb978bc228d0a721ccf09d4363f6bb4f84aff804757918e4bd2cb1f3fe063</citedby><cites>FETCH-LOGICAL-c529t-c36fdb978bc228d0a721ccf09d4363f6bb4f84aff804757918e4bd2cb1f3fe063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25794678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aoto, Kazushi</creatorcontrib><creatorcontrib>Sandell, Lisa L.</creatorcontrib><creatorcontrib>Butler Tjaden, Naomi E.</creatorcontrib><creatorcontrib>Yuen, Kobe C.</creatorcontrib><creatorcontrib>Watt, Kristin E. Noack</creatorcontrib><creatorcontrib>Black, Brian L.</creatorcontrib><creatorcontrib>Durnin, Michael</creatorcontrib><creatorcontrib>Trainor, Paul A.</creatorcontrib><title>Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>Neural crest cells (NCC) comprise a multipotent, migratory stem cell and progenitor population that gives rise to numerous cell and tissue types within a developing embryo, including craniofacial bone and cartilage, neurons and glia of the peripheral nervous system, and melanocytes within the skin. Here we describe two novel stable transgenic mouse lines suitable for lineage tracing and analysis of gene function in NCC. Firstly, using the F10N enhancer of the Mef2c gene (Mef2c-F10N) linked to LacZ, we generated transgenic mice (Mef2c-F10N-LacZ) that express LacZ in the majority, if not all migrating NCC that delaminate from the neural tube. Mef2c-F10N-LacZ then continues to be expressed primarily in neurogenic, gliogenic and melanocytic NCC and their derivatives, but not in ectomesenchymal derivatives. Secondly, we used the same Mef2c-F10N enhancer together with Cre recombinase to generate transgenic mice (Mef2c-F10N-Cre) that can be used to indelibly label, or alter gene function in, migrating NCC and their derivatives. At early stages of development, Mef2c-F10N-LacZ and Mef2c-F10N-Cre label NCC in a pattern similar to Wnt1-Cre mice, with the exception that Mef2c-F10N-LacZ and Mef2c-F10N-Cre specifically label NCC that have delaminated from the neural plate, while premigratory NCC are not labeled. Thus, our Mef2c-F10N-LacZ and Mef2c-F10N-Cre transgenic mice provide new resources for tracing migratory NCC and analyzing gene function in migrating and differentiating NCC independently of NCC formation. •The Mef2c-F10N enhancer is expressed in neural crest cells (NCC).•The Mef2c-F10N enhancer was used to establish new tools and resources for studying NCC development and function.•We describe Mef2c-F10N-LacZ and Mef2c-F10N-Cre stable transgenic mouse lines.•These lines mice facilitate tracing migratory NCC.•These lines allow for analyzing gene function in migrating and differentiating NCC independently of NCC formation.</description><subject>Animals</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Cell Movement</subject><subject>Chickens</subject><subject>Cre recombinase</subject><subject>Enhancer Elements, Genetic</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genotype</subject><subject>Humans</subject><subject>Integrases - genetics</subject><subject>Integrases - metabolism</subject><subject>Lac Operon</subject><subject>Mef2C enhancer (Mef2c-F10N)</subject><subject>Melanocytes - cytology</subject><subject>Mesoderm - metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neural Crest - cytology</subject><subject>Neural Crest - metabolism</subject><subject>Neural crest cell</subject><subject>Neurons - metabolism</subject><subject>Rabbits</subject><subject>Rats</subject><subject>Xenopus</subject><subject>Zebrafish</subject><subject>β-galactosidase reporter (LacZ)</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UU2KFDEUDqI47egJBMlyXFSbv0pVLRSkcVRodaMgbkIqeelJU5WMSVVDn8R7eBDPZGp6HHQjPMjifX8vH0JPKVlTQuWL_fpoex_XjNB6TVgZdg-tKOnqqpbi6320IoSyikoiz9CjnPeEEN62_CE6Y3XTCdm0K_TjAzhmqktKPmIIVzoYSNgmf4CAf_2sdnrQZorZW50BX2y1-fYc62DxJgFOYOLY-7CsRm8AO2384Cc9QcHo4Zgh4-jwDkLZzcFMPoYb9uAD6N1CKFAfcIA56QGbBHnCBoYhP0YPnB4yPLl9z9GXyzefN--q7ae37zevt5WpWTdVhktn-65pe8NYa4luGDXGkc4KLrmTfS9cK7RzLRFNOZq2IHrLTE8dd0AkP0evTrrXcz-CNRCmkkRdJz_qdFRRe_XvJvgrtYsHJQTndceLwMWtQIrf55JfjT4vJ-gAcc6KypayumNi8eInqEkx5wTuzoYStVSq9uqmUrVUqggrwwrr2d8J7zh_OiyAlycAlH86eEgqGw-lSOtLQ5Oy0f_X4DfiBbct</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Aoto, Kazushi</creator><creator>Sandell, Lisa L.</creator><creator>Butler Tjaden, Naomi E.</creator><creator>Yuen, Kobe C.</creator><creator>Watt, Kristin E. Noack</creator><creator>Black, Brian L.</creator><creator>Durnin, Michael</creator><creator>Trainor, Paul A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150601</creationdate><title>Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells</title><author>Aoto, Kazushi ; Sandell, Lisa L. ; Butler Tjaden, Naomi E. ; Yuen, Kobe C. ; Watt, Kristin E. Noack ; Black, Brian L. ; Durnin, Michael ; Trainor, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-c36fdb978bc228d0a721ccf09d4363f6bb4f84aff804757918e4bd2cb1f3fe063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Cell Movement</topic><topic>Chickens</topic><topic>Cre recombinase</topic><topic>Enhancer Elements, Genetic</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genotype</topic><topic>Humans</topic><topic>Integrases - genetics</topic><topic>Integrases - metabolism</topic><topic>Lac Operon</topic><topic>Mef2C enhancer (Mef2c-F10N)</topic><topic>Melanocytes - cytology</topic><topic>Mesoderm - metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neural Crest - cytology</topic><topic>Neural Crest - metabolism</topic><topic>Neural crest cell</topic><topic>Neurons - metabolism</topic><topic>Rabbits</topic><topic>Rats</topic><topic>Xenopus</topic><topic>Zebrafish</topic><topic>β-galactosidase reporter (LacZ)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoto, Kazushi</creatorcontrib><creatorcontrib>Sandell, Lisa L.</creatorcontrib><creatorcontrib>Butler Tjaden, Naomi E.</creatorcontrib><creatorcontrib>Yuen, Kobe C.</creatorcontrib><creatorcontrib>Watt, Kristin E. Noack</creatorcontrib><creatorcontrib>Black, Brian L.</creatorcontrib><creatorcontrib>Durnin, Michael</creatorcontrib><creatorcontrib>Trainor, Paul A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoto, Kazushi</au><au>Sandell, Lisa L.</au><au>Butler Tjaden, Naomi E.</au><au>Yuen, Kobe C.</au><au>Watt, Kristin E. Noack</au><au>Black, Brian L.</au><au>Durnin, Michael</au><au>Trainor, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>402</volume><issue>1</issue><spage>3</spage><epage>16</epage><pages>3-16</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>Neural crest cells (NCC) comprise a multipotent, migratory stem cell and progenitor population that gives rise to numerous cell and tissue types within a developing embryo, including craniofacial bone and cartilage, neurons and glia of the peripheral nervous system, and melanocytes within the skin. Here we describe two novel stable transgenic mouse lines suitable for lineage tracing and analysis of gene function in NCC. Firstly, using the F10N enhancer of the Mef2c gene (Mef2c-F10N) linked to LacZ, we generated transgenic mice (Mef2c-F10N-LacZ) that express LacZ in the majority, if not all migrating NCC that delaminate from the neural tube. Mef2c-F10N-LacZ then continues to be expressed primarily in neurogenic, gliogenic and melanocytic NCC and their derivatives, but not in ectomesenchymal derivatives. Secondly, we used the same Mef2c-F10N enhancer together with Cre recombinase to generate transgenic mice (Mef2c-F10N-Cre) that can be used to indelibly label, or alter gene function in, migrating NCC and their derivatives. At early stages of development, Mef2c-F10N-LacZ and Mef2c-F10N-Cre label NCC in a pattern similar to Wnt1-Cre mice, with the exception that Mef2c-F10N-LacZ and Mef2c-F10N-Cre specifically label NCC that have delaminated from the neural plate, while premigratory NCC are not labeled. Thus, our Mef2c-F10N-LacZ and Mef2c-F10N-Cre transgenic mice provide new resources for tracing migratory NCC and analyzing gene function in migrating and differentiating NCC independently of NCC formation. •The Mef2c-F10N enhancer is expressed in neural crest cells (NCC).•The Mef2c-F10N enhancer was used to establish new tools and resources for studying NCC development and function.•We describe Mef2c-F10N-LacZ and Mef2c-F10N-Cre stable transgenic mouse lines.•These lines mice facilitate tracing migratory NCC.•These lines allow for analyzing gene function in migrating and differentiating NCC independently of NCC formation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25794678</pmid><doi>10.1016/j.ydbio.2015.02.022</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1606
ispartof Developmental biology, 2015-06, Vol.402 (1), p.3-16
issn 0012-1606
1095-564X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4433593
source ScienceDirect Journals
subjects Animals
Cell Differentiation
Cell Lineage
Cell Movement
Chickens
Cre recombinase
Enhancer Elements, Genetic
Gene Expression Regulation, Developmental
Genotype
Humans
Integrases - genetics
Integrases - metabolism
Lac Operon
Mef2C enhancer (Mef2c-F10N)
Melanocytes - cytology
Mesoderm - metabolism
Mice
Mice, Transgenic
Neural Crest - cytology
Neural Crest - metabolism
Neural crest cell
Neurons - metabolism
Rabbits
Rats
Xenopus
Zebrafish
β-galactosidase reporter (LacZ)
title Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mef2c-F10N%20enhancer%20driven%20%CE%B2-galactosidase%20(LacZ)%20and%20Cre%20recombinase%20mice%20facilitate%20analyses%20of%20gene%20function%20and%20lineage%20fate%20in%20neural%20crest%20cells&rft.jtitle=Developmental%20biology&rft.au=Aoto,%20Kazushi&rft.date=2015-06-01&rft.volume=402&rft.issue=1&rft.spage=3&rft.epage=16&rft.pages=3-16&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2015.02.022&rft_dat=%3Cproquest_pubme%3E1681259246%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-c36fdb978bc228d0a721ccf09d4363f6bb4f84aff804757918e4bd2cb1f3fe063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1681259246&rft_id=info:pmid/25794678&rfr_iscdi=true