Loading…

Acyl-CoA:cholesterol acyltransferase 1 blockage enhances autophagy in the neurons of triple transgenic Alzheimer’s disease mouse and reduces human P301L-tau content at the pre-symptomatic stage

Patients with Alzheimer’s disease (AD) display amyloidopathy and tauopathy. In mouse models of AD, pharmacological inhibition using small molecule enzyme inhibitors, or genetic inactivation of Acyl-CoA: cholesterol acyltransferase 1 (ACAT1) diminished amyloidopathy and restored cognitive deficits. I...

Full description

Saved in:
Bibliographic Details
Published in:Neurobiology of aging 2015-04, Vol.36 (7), p.2248-2259
Main Authors: Shibuya, Yohei, Niu, Zhaoyang, Bryleva, Elena Y., Harris, Brent T., Murphy, Stephanie R., Kheirollah, Alireza, Bowen, Zachary D., Chang, Catherine C.Y., Chang, Ta-Yuan
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Patients with Alzheimer’s disease (AD) display amyloidopathy and tauopathy. In mouse models of AD, pharmacological inhibition using small molecule enzyme inhibitors, or genetic inactivation of Acyl-CoA: cholesterol acyltransferase 1 (ACAT1) diminished amyloidopathy and restored cognitive deficits. In microglia, ACAT1 blockage increases autophagosome formation and stimulates amyloid β peptide1–42 degradation. Here we hypothesize that in neurons ACAT1 blockage augments autophagy and increases autophagy-mediated degradation of P301L-tau protein. We tested this possibility in murine neuroblastoma cells ectopically expressing human tau, and in primary neurons isolated from triple transgenic AD (3XTg-AD) mice that express mutant forms of APP, PS1, and human tau. The results show that ACAT1 blockage increases autophagosome formation and decreases P301L-tau protein content without affecting endogenous mouse tau protein content. In vivo , lacking Acat1 decreases P301L-tau protein content in the brains of young 3XTg-AD mice but not in those of old mice, where extensive hyperphosphorylations and aggregation of P301L-tau take place. These results suggest that, in addition to ameliorating amyloidopathy in both young and old AD mice, ACAT1 blockage may benefit AD by reducing tauopathy at early stage.
ISSN:0197-4580
1558-1497
DOI:10.1016/j.neurobiolaging.2015.04.002