Loading…
Mapping histone methylation dynamics during virus-specific CD8+ T cell differentiation in response to infection
The molecular mechanisms that regulate the rapid transcriptional changes that occur during cytotoxic T lymphocyte (CTL) proliferation and differentiation in response to infection are poorly understood. We have utilised ChIP-seq to assess histone H3 methylation dynamics within naïve, effector and mem...
Saved in:
Published in: | Immunity (Cambridge, Mass.) Mass.), 2014-11, Vol.41 (5), p.853-865 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The molecular mechanisms that regulate the rapid transcriptional changes that occur during cytotoxic T lymphocyte (CTL) proliferation and differentiation in response to infection are poorly understood. We have utilised ChIP-seq to assess histone H3 methylation dynamics within naïve, effector and memory virus-specific T cells isolated directly
ex vivo
after influenza A virus infection. Our results show that within naïve T cells, co-deposition of the permissive H3K4me3 and repressive H3K27me3 modifications is a signature of gene loci associated with gene transcription, replication and cellular differentiation. Upon differentiation into effector and/or memory CTL, the majority of these gene loci lose the repressive H3K27me3 while retaining the permissive H3K4me3 modification. In contrast, immune-related effector gene promoters within naïve T cells lacked the permissive H3K4me3 modification, with acquisition of this modification occurring upon differentiation into effector/memory CTL. Thus, coordinate transcriptional regulation of CTL genes with related functions is achieved using distinct epigenetic mechanisms. |
---|---|
ISSN: | 1074-7613 1097-4180 |
DOI: | 10.1016/j.immuni.2014.11.001 |