Loading…
A pre-screening FISH-based method to detect CRISPR/Cas9 off-targets in mouse embryonic stem cells
The clustered regularly interspaced short palindromic repeat (CRISPR)/associated 9 (Cas9) technology has been recently added to the tools allowing efficient and easy DNA targeting, representing a very promising approach to gene engineering. Using the CRISPR/Cas9 system we have driven the integration...
Saved in:
Published in: | Scientific reports 2015-07, Vol.5 (1), p.12327-12327, Article 12327 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The clustered regularly interspaced short palindromic repeat (CRISPR)/associated 9 (Cas9) technology has been recently added to the tools allowing efficient and easy DNA targeting, representing a very promising approach to gene engineering. Using the CRISPR/Cas9 system we have driven the integration of exogenous DNA sequences to the X-linked
Hprt
gene of mouse embryonic stem cells. We show here that a simple fluorescence
in situ
hybridization (FISH)-based strategy allows the detection and the frequency evaluation of non-specific integrations of a given plasmid. FISH analysis revealed that these integrations do not match the software predicted off-target loci. We conclude that the frequency of these CRISPR-mediated off-target DNA cuts is negligible, since, due to the occurrence of spontaneous double-strand breaks, we observed more aspecific plasmid integrations than those corresponding to predicted off-target sites. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep12327 |