Loading…
Novel pH-Stable Glycoside Hydrolase Family 3 β-Xylosidase from Talaromyces amestolkiae: an Enzyme Displaying Regioselective Transxylosylation
This paper reports on a novel β-xylosidase from the hemicellulolytic fungus Talaromyces amestolkiae. The expression of this enzyme, called BxTW1, could be induced by beechwood xylan and was purified as a glycoprotein from culture supernatants. We characterized the gene encoding this enzyme as an int...
Saved in:
Published in: | Applied and environmental microbiology 2015-09, Vol.81 (18), p.6380-6392 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper reports on a novel β-xylosidase from the hemicellulolytic fungus Talaromyces amestolkiae. The expression of this enzyme, called BxTW1, could be induced by beechwood xylan and was purified as a glycoprotein from culture supernatants. We characterized the gene encoding this enzyme as an intronless gene belonging to the glycoside hydrolase gene family 3 (GH3). BxTW1 exhibited transxylosylation activity in a regioselective way. This feature would allow the synthesis of oligosaccharides or other compounds not available from natural sources, such as alkyl glycosides displaying antimicrobial or surfactant properties. Regioselective transxylosylation, an uncommon combination, makes the synthesis reproducible, which is desirable for its potential industrial application. BxTW1 showed high pH stability and Cu(2+) tolerance. The enzyme displayed a pI of 7.6, a molecular mass around 200 kDa in its active dimeric form, and Km and Vmax values of 0.17 mM and 52.0 U/mg, respectively, using commercial p-nitrophenyl-β-d-xylopyranoside as the substrate. The catalytic efficiencies for the hydrolysis of xylooligosaccharides were remarkably high, making it suitable for different applications in food and bioenergy industries. |
---|---|
ISSN: | 0099-2240 1098-5336 |
DOI: | 10.1128/AEM.01744-15 |