Loading…

Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions

Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block com...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2015-09, Vol.6 (1), p.8127-8127, Article 8127
Main Authors: Li, Xiaoyu, Gao, Yang, Boott, Charlotte E., Winnik, Mitchell A., Manners, Ian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block comicelle building blocks with crystalline cores to create supermicelles using spatially confined hydrogen-bonding interactions. We also demonstrate that it is possible to further program the self-assembly of these synthetic building blocks into structures of increased complexity by combining hydrogen-bonding interactions with segment solvophobicity. The overall approach offers an efficient, non-covalent synthesis method for the solution-phase fabrication of a range of complex and potentially functional supermicelle architectures in which the crystallization, hydrogen-bonding and solvophobic interactions are combined in an orthogonal manner. Ubiquitous in nature, hierarchical architectures are less commonly achieved in synthetic functional materials. Here, the authors design and carefully assemble block copolymer micelles into complex supermicelles using hydrogen bonding in orthogonal combination with other non-covalent interactions.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms9127