Loading…
Acidic phospholipids govern the enhanced activation of IgG-B cell receptor
B cells that express the isotype-switched IgG-B cell receptor (IgG-BCR) are one of the driving forces for antibody memory. To allow for a rapid memory IgG antibody response, IgG-BCR evolved into a highly effective signalling machine. Here, we report that the positively charged cytoplasmic domain of...
Saved in:
Published in: | Nature communications 2015-10, Vol.6 (1), p.8552-8552, Article 8552 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | B cells that express the isotype-switched IgG-B cell receptor (IgG-BCR) are one of the driving forces for antibody memory. To allow for a rapid memory IgG antibody response, IgG-BCR evolved into a highly effective signalling machine. Here, we report that the positively charged cytoplasmic domain of mIgG (mIgG-tail) specifically interacts with negatively charged acidic phospholipids. The key immunoglobulin tail tyrosine (ITT) in mIgG-tail is thus sequestered in the membrane hydrophobic core in quiescent B cells. Pre-disruption of such interaction leads to excessive recruitment of BCRs and inflated BCR signalling upon antigen stimulation, resulting in hyperproliferation of primary B cells. Physiologically, membrane-sequestered mIgG-tail can be released by antigen engagement or Ca
2+
mobilization in the initiation of B cell activation. Our studies suggest a novel regulatory mechanism for how dynamic association of mIgG-tail with acidic phospholipids governs the enhanced activation of IgG-BCR.
Adaptive immunity is the memory of previously experienced pathogens, where B cells establish a rapid antibody response upon IgG-B cell receptor activation. Here, Chen
et al
. show that sequestration of the cytoplasmic domain of mIgG by plasma membrane phospholipids prevents inappropriate activation of IgG-BCR signalling. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms9552 |