Loading…
Quantum engineering of spin and anisotropy in magnetic molecular junctions
Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin ce...
Saved in:
Published in: | Nature communications 2015-10, Vol.6 (1), p.8536-8536, Article 8536 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin centre. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride monolayer to mediate the coupling between a cobalt spin in CoH
x
(
x
=1,2) complexes and the metal contact. While hydrogen controls the total effective spin, the corrugation smoothly tunes the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunnelling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy.
The spins of single molecules and defect centres possess properties which can be strongly influenced by their material contacts in electrical junctions. Here, the authors study the coupling between cobalt hydride complexes and a Rh(111) contact, mediated through a hexagonal boron nitride layer. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms9536 |