Loading…

Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria

Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) is responsible for almost all biological CO 2 assimilation, but forms inhibited complexes with its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. The distantly related AAA+ proteins rubisco activase and CbbX remodel in...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2015-11, Vol.6 (1), p.8883-8883, Article 8883
Main Authors: Tsai, Yi-Chin Candace, Lapina, Maria Claribel, Bhushan, Shashi, Mueller-Cajar, Oliver
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) is responsible for almost all biological CO 2 assimilation, but forms inhibited complexes with its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. The distantly related AAA+ proteins rubisco activase and CbbX remodel inhibited rubisco complexes to effect inhibitor release in plants and α-proteobacteria, respectively. Here we characterize a third class of rubisco activase in the chemolithoautotroph Acidithiobacillus ferrooxidans . Two sets of isoforms of CbbQ and CbbO form hetero-oligomers that function as specific activases for two structurally diverse rubisco forms. Mutational analysis supports a model wherein the AAA+ protein CbbQ functions as motor and CbbO is a substrate adaptor that binds rubisco via a von Willebrand factor A domain. Understanding the mechanisms employed by nature to overcome rubisco’s shortcomings will increase our toolbox for engineering photosynthetic carbon dioxide fixation. The CO 2 -fixing enzyme rubisco requires motor proteins known as rubisco activases to remove inhibitors bound to its active site. Here the authors describe a new class of rubisco activase present in chemoautotrophic bacteria that belongs to the MoxR family of AAA+ ATPases.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms9883