Loading…
LKB1 Inactivation Elicits a Redox Imbalance to Modulate Non-small Cell Lung Cancer Plasticity and Therapeutic Response
LKB1 regulates both cell growth and energy metabolism. It remains unclear how LKB1 inactivation coordinates tumor progression with metabolic adaptation in non-small cell lung cancer (NSCLC). Here in Kras(G12D);Lkb1(lox/lox) (KL) mouse model, we reveal differential reactive oxygen species (ROS) level...
Saved in:
Published in: | Cancer cell 2015-05, Vol.27 (5), p.698-711 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | LKB1 regulates both cell growth and energy metabolism. It remains unclear how LKB1 inactivation coordinates tumor progression with metabolic adaptation in non-small cell lung cancer (NSCLC). Here in Kras(G12D);Lkb1(lox/lox) (KL) mouse model, we reveal differential reactive oxygen species (ROS) levels in lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC). ROS can modulate ADC-to-SCC transdifferentiation (AST). Further, pentose phosphate pathway deregulation and impaired fatty acid oxidation collectively contribute to the redox imbalance and functionally affect AST. Similar tumor and redox heterogeneity also exist in human NSCLC with LKB1 inactivation. In preclinical trials toward metabolic stress, certain KL ADC can develop drug resistance through squamous transdifferentiation. This study uncovers critical redox control of tumor plasticity that may affect therapeutic response in NSCLC. |
---|---|
ISSN: | 1535-6108 1878-3686 |
DOI: | 10.1016/j.ccell.2015.04.001 |