Loading…

pyrF as a Counterselectable Marker for Unmarked Genetic Manipulations in Treponema denticola

The pathophysiology of Treponema denticola, an oral pathogen associated with both periodontal and endodontic infections, is poorly understood due to its fastidious growth and recalcitrance to genetic manipulations. Counterselectable markers are instrumental in constructing clean and unmarked mutatio...

Full description

Saved in:
Bibliographic Details
Published in:Applied and environmental microbiology 2016-02, Vol.82 (4), p.1346-1352
Main Authors: Kurniyati, Kurni, Li, Chunhao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The pathophysiology of Treponema denticola, an oral pathogen associated with both periodontal and endodontic infections, is poorly understood due to its fastidious growth and recalcitrance to genetic manipulations. Counterselectable markers are instrumental in constructing clean and unmarked mutations in bacteria. Here, we demonstrate that pyrF, a gene encoding orotidine-5'-monophosphate decarboxylase, can be used as a counterselectable marker in T. denticola to construct marker-free mutants. T. denticola is susceptible to 5-fluoroorotic acid (5-FOA). To establish a pyrF-based counterselectable knockout system in T. denticola, the pyrF gene was deleted. The deletion conferred resistance to 5-FOA in T. denticola. Next, a single-crossover mutant was constructed by reintroducing pyrF along with a gentamicin resistance gene (aacC1) back into the chromosome of the pyrF mutant at the locus of choice. In this study, we chose flgE, a flagellar hook gene that is located within a large polycistronic motility gene operon, as our target gene. The obtained single-crossover mutant (named FlgE(in)) regained the susceptibility to 5-FOA. Finally, FlgE(in) was plated on solid agar containing 5-FOA. Numerous colonies of the 5-FOA-resistant mutant (named FlgE(out)) were obtained and characterized by PCR and Southern blotting analyses. The results showed that the flgE gene was deleted and FlgE(out) was free of selection markers (i.e., pyrF and aacC1). Compared to previously constructed flgE mutants that contain an antibiotic selection marker, the deletion of flgE in FlgE(out) has no polar effect on its downstream gene expression. The system developed here will provide us with a new tool for investigating the genetics and pathogenicity of T. denticola.
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.03704-15