Loading…
Protonation States of Membrane-Embedded Carboxylic Acid Groups in Rhodopsin and Metarhodopsin II: A Fourier-Transform Infrared Spectroscopy Study of Site-Directed Mutants
A method was developed to measure Fourier-transform infrared (FTIR) difference spectra of detergent-solubilized rhodopsin expressed in COS cells. Experiments were performed on native bovine rhodopsin, rhodopsin expressed in COS cells, and three expressed rhodopsin mutants with amino acid replacement...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1993-11, Vol.90 (21), p.10206-10210 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A method was developed to measure Fourier-transform infrared (FTIR) difference spectra of detergent-solubilized rhodopsin expressed in COS cells. Experiments were performed on native bovine rhodopsin, rhodopsin expressed in COS cells, and three expressed rhodopsin mutants with amino acid replacements of membrane-embedded carboxylic acid groups: Asp-83 → Asn (D83N), Glu-122 → Gln (E122Q), and the double mutant D83N/E122Q. Each of the mutant opsins bound 11-cis-retinal to yield a visible light-absorbing pigment. Upon illumination, each of the mutant pigments formed a metarhodopsin II-like species with maximal absorption at 380 nm that was able to activate guanine nucleotide exchange by transducin. Rhodopsin versus metarhodopsin II-like photoproduct FTIR-difference spectra were recorded for each sample. The COS-cell rhodopsin and mutant difference spectra showed close correspondence to that of rhodopsin from disc membranes. Difference bands (rhodopsin/metarhodopsin II) at 1767/1750 cm-1and at 1734/1745 cm-1were absent from the spectra of mutants D83N and E122Q, respectively. Both bands were absent from the spectrum of the double mutant D83N/E122Q. These results show that Asp-83 and Glu-122 are protonated both in rhodopsin and in metarhodopsin II, in agreement with the isotope effects observed in spectra measured in2H2O. A photoproduct band at 1712 cm-1was not affected by either single or double replacements at positions 83 and 122. We deduce that the 1712 cm-1band arises from the protonation of Glu-113 in metarhodopsin II. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.90.21.10206 |