Loading…

Differences in GFR and Tissue Oxygenation, and Interactions between Stenotic and Contralateral Kidneys in Unilateral Atherosclerotic Renovascular Disease

Atherosclerotic renal artery stenosis (ARAS) can reduce renal blood flow, tissue oxygenation, and GFR. In this study, we sought to examine associations between renal hemodynamics and tissue oxygenation with single-kidney function, pressor hormones, and inflammatory biomarkers in patients with unilat...

Full description

Saved in:
Bibliographic Details
Published in:Clinical journal of the American Society of Nephrology 2016-03, Vol.11 (3), p.458-469
Main Authors: Herrmann, Sandra M S, Saad, Ahmed, Eirin, Alfonso, Woollard, John, Tang, Hui, McKusick, Michael A, Misra, Sanjay, Glockner, James F, Lerman, Lilach O, Textor, Stephen C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atherosclerotic renal artery stenosis (ARAS) can reduce renal blood flow, tissue oxygenation, and GFR. In this study, we sought to examine associations between renal hemodynamics and tissue oxygenation with single-kidney function, pressor hormones, and inflammatory biomarkers in patients with unilateral ARAS undergoing medical therapy alone or stent revascularization. Nonrandomized inpatient studies were performed in patients with unilateral ARAS (>60% occlusion) before and 3 months after revascularization (n=10) or medical therapy (n=20) or patients with essential hypertension (n=32) under identical conditions. The primary study outcome was change in single-kidney GFR. Individual kidney hemodynamics and volume were measured using multidetector computed tomography. Tissue oxygenation (using R(2)* as a measure of deoxyhemoglobin) was determined by blood oxygen level-dependent magnetic resonance imaging at 3 T. Renal vein neutrophil gelatinase-associated lipocalin (NGAL), monocyte chemoattractant protein-1 (MCP-1), and plasma renin activity were measured. Total GFR did not change over 3 months in either group, but the stenotic kidney (STK) GFR rose over time in the stent compared with the medical group (+2.2[-1.8 to 10.5] versus -5.3[-7.3 to -0.3] ml/min; P=0.03). Contralateral kidney (CLK) GFR declined in the stent group (43.6±19.7 to 36.6±19.5 ml/min; P=0.03). Fractional tissue hypoxia fell in the STK (fraction R(2)* >30/s: 22.1%±20% versus 14.9%±18.3%; P
ISSN:1555-9041
1555-905X
DOI:10.2215/CJN.03620415