Loading…
High glucose‐induced changes in hyaloid‐retinal vessels during early ocular development of zebrafish: a short‐term animal model of diabetic retinopathy
Background and Purpose Although a variety of animal models have been used to test drug candidates and examine the pathogenesis of diabetic retinopathy, time‐saving and inexpensive models are still needed to evaluate the increasing number of therapeutic approaches. Experimental Approach We developed...
Saved in:
Published in: | British journal of pharmacology 2016-01, Vol.173 (1), p.15-26 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background and Purpose
Although a variety of animal models have been used to test drug candidates and examine the pathogenesis of diabetic retinopathy, time‐saving and inexpensive models are still needed to evaluate the increasing number of therapeutic approaches.
Experimental Approach
We developed a model for diabetic retinopathy using the early stage of transgenic zebrafish (flk:EGFP) by treating embryos with 130 mM glucose, from 3‐6 days post fertilisation (high‐glucose model). On day 6, lenses from zebrafish larvae were isolated and treated with 3% trypsin, and changes in hyaloid‐retinal vessels were analysed using fluorescent stereomicroscopy. In addition, expression of tight junction proteins (such as zonula occludens‐1), effects of hyperosmolar solutions and of hypoxia, and Vegf expression were assessed by RT –PCR. NO production was assessed with a fluorescent substrate. Effects of inhibitors of the VEGF receptor, NO synthesis and a VEGF antibody (ranibizumab) were also measured.
Key Results
In this high‐glucose model, dilation of hyaloid‐retinal vessels, on day 6, was accompanied by morphological lesions with disruption of tight junction proteins, overproduction of Vegf mRNA and increased NO production. Treatment of this high‐glucose model with an inhibitor of VEGF receptor tyrosine kinase or an inhibitor of NO synthase or ranibizumab decreased dilation of hyaloid‐retinal vessels.
Conclusions and Implications
These findings suggest that short‐term exposure of zebrafish larvae to high‐glucose conditions could be used for screening and drug discovery for diabetic retinopathy and particularly for disorders of retinal vessels related to disruption of tight junction proteins and excessive VEGF and NO production. |
---|---|
ISSN: | 0007-1188 1476-5381 |
DOI: | 10.1111/bph.13279 |