Loading…
TALEN-mediated enhancer knockout influences TNFAIP3 gene expression and mimics a molecular phenotype associated with systemic lupus erythematosus
Linkage disequilibrium poses a major challenge to the functional characterization of specific disease-associated susceptibility variants. Precision genome-editing technologies have provided new opportunities to address this challenge. As proof of concept, we employed TALEN (transcription activation-...
Saved in:
Published in: | Genes and immunity 2016-04, Vol.17 (3), p.165-170 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Linkage disequilibrium poses a major challenge to the functional characterization of specific disease-associated susceptibility variants. Precision genome-editing technologies have provided new opportunities to address this challenge. As proof of concept, we employed TALEN (transcription activation-like effector nuclease)-mediated genome editing to specifically disrupt the TT>A enhancer region to mimic candidate causal variants identified in the systemic lupus erythematosus-associated susceptibility gene,
tumor necrosis factor-α-induced protein 3
(
TNFAIP3
), in an isogenic HEK293T cell line devoid of other linkage disequilibrium-associated variants. Targeted disruption of the TT>A enhancer impaired its interaction with the
TNFAIP3
promoter by long-range DNA looping, thereby reducing
TNFAIP3
gene expression. Loss of
TNFAIP3
mRNA and its encoded protein, A20, impaired tumor necrosis factor-α-induced receptor-mediated downregulation of nuclear factor-κB signaling, a hallmark of autoimmunity. Results demonstrate that the TT>A enhancer variants contribute to causality and function independently of other variants to disrupt
TNFAIP3
expression. Furthermore, we believe this approach can be implemented to independently examine other candidate casual variants in the future. |
---|---|
ISSN: | 1466-4879 1476-5470 |
DOI: | 10.1038/gene.2016.4 |