Loading…
Water−Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets
The water−gas shift (WGS) reaction (CO + H2O ⇆ CO2 + H2) is of major industrial significance in the production of H2 from hydrocarbon sources. High temperatures are required, typically in excess of 200 °C, using d-metal catalysts on oxide supports. In our study the WGS process is separated into two...
Saved in:
Published in: | Journal of the American Chemical Society 2009-10, Vol.131 (40), p.14154-14155 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The water−gas shift (WGS) reaction (CO + H2O ⇆ CO2 + H2) is of major industrial significance in the production of H2 from hydrocarbon sources. High temperatures are required, typically in excess of 200 °C, using d-metal catalysts on oxide supports. In our study the WGS process is separated into two half-cell electrochemical reactions (H+ reduction and CO oxidation), catalyzed by enzymes attached to a conducting particle. The H+ reduction reaction is catalyzed by a hydrogenase, Hyd-2, from Escherichia coli, and CO oxidation is catalyzed by a carbon monoxide dehydrogenase (CODH I) from Carboxydothermus hydrogenoformans. This results in a highly efficient heterogeneous catalyst with a turnover frequency, at 30 °C, of at least 2.5 s−1 per minimum functional unit (a CODH/Hyd-2 pair) which is comparable to conventional high-temperature catalysts. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja905797w |