Loading…
Water−Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets
The water−gas shift (WGS) reaction (CO + H2O ⇆ CO2 + H2) is of major industrial significance in the production of H2 from hydrocarbon sources. High temperatures are required, typically in excess of 200 °C, using d-metal catalysts on oxide supports. In our study the WGS process is separated into two...
Saved in:
Published in: | Journal of the American Chemical Society 2009-10, Vol.131 (40), p.14154-14155 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a469t-a981a7bb41b3cd2813060f9bc812dab2ae000410cfc3567ffa00d889bb2a41fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-a469t-a981a7bb41b3cd2813060f9bc812dab2ae000410cfc3567ffa00d889bb2a41fc3 |
container_end_page | 14155 |
container_issue | 40 |
container_start_page | 14154 |
container_title | Journal of the American Chemical Society |
container_volume | 131 |
creator | Lazarus, Oliver Woolerton, Thomas W Parkin, Alison Lukey, Michael J Reisner, Erwin Seravalli, Javier Pierce, Elizabeth Ragsdale, Stephen W Sargent, Frank Armstrong, Fraser A |
description | The water−gas shift (WGS) reaction (CO + H2O ⇆ CO2 + H2) is of major industrial significance in the production of H2 from hydrocarbon sources. High temperatures are required, typically in excess of 200 °C, using d-metal catalysts on oxide supports. In our study the WGS process is separated into two half-cell electrochemical reactions (H+ reduction and CO oxidation), catalyzed by enzymes attached to a conducting particle. The H+ reduction reaction is catalyzed by a hydrogenase, Hyd-2, from Escherichia coli, and CO oxidation is catalyzed by a carbon monoxide dehydrogenase (CODH I) from Carboxydothermus hydrogenoformans. This results in a highly efficient heterogeneous catalyst with a turnover frequency, at 30 °C, of at least 2.5 s−1 per minimum functional unit (a CODH/Hyd-2 pair) which is comparable to conventional high-temperature catalysts. |
doi_str_mv | 10.1021/ja905797w |
format | article |
fullrecord | <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4893959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b021365193</sourcerecordid><originalsourceid>FETCH-LOGICAL-a469t-a981a7bb41b3cd2813060f9bc812dab2ae000410cfc3567ffa00d889bb2a41fc3</originalsourceid><addsrcrecordid>eNptkM1KAzEUhYMoWqsLX0CyceFiNJnfZCNIqVUoKP4uw00m006ZzpQkVadP4NpH9ElMaakKrsK958u59x6Ejig5oySk5xPgJMl49raFOjQJSZDQMN1GHUJIGGQsjfbQvrUTX8Yho7toj3JGMpqRDnp-AafN18fnACx-GJeFw_calCubGvfAQdUudI5l67t584779aKdaouXalPncw_WIzwwMBuXTuO7yrtV2tkDtFNAZfXh-u2ip6v-Y-86GN4ObnqXwwDilLsAOKOQSRlTGanc7xaRlBRcKkbDHGQIerkzJapQUZJmRQGE5Ixx6aWY-mYXXax8Z3M51bnStTNQiZkpp2Ba0UAp_ip1ORaj5lXEjEc84d7gdGWgTGOt0cXmLyViGa7YhOvZ49_Dfsh1mh44WQGgrJg0c1P72_8x-gawCYPy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Water−Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lazarus, Oliver ; Woolerton, Thomas W ; Parkin, Alison ; Lukey, Michael J ; Reisner, Erwin ; Seravalli, Javier ; Pierce, Elizabeth ; Ragsdale, Stephen W ; Sargent, Frank ; Armstrong, Fraser A</creator><creatorcontrib>Lazarus, Oliver ; Woolerton, Thomas W ; Parkin, Alison ; Lukey, Michael J ; Reisner, Erwin ; Seravalli, Javier ; Pierce, Elizabeth ; Ragsdale, Stephen W ; Sargent, Frank ; Armstrong, Fraser A</creatorcontrib><description>The water−gas shift (WGS) reaction (CO + H2O ⇆ CO2 + H2) is of major industrial significance in the production of H2 from hydrocarbon sources. High temperatures are required, typically in excess of 200 °C, using d-metal catalysts on oxide supports. In our study the WGS process is separated into two half-cell electrochemical reactions (H+ reduction and CO oxidation), catalyzed by enzymes attached to a conducting particle. The H+ reduction reaction is catalyzed by a hydrogenase, Hyd-2, from Escherichia coli, and CO oxidation is catalyzed by a carbon monoxide dehydrogenase (CODH I) from Carboxydothermus hydrogenoformans. This results in a highly efficient heterogeneous catalyst with a turnover frequency, at 30 °C, of at least 2.5 s−1 per minimum functional unit (a CODH/Hyd-2 pair) which is comparable to conventional high-temperature catalysts.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja905797w</identifier><identifier>PMID: 19807170</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aldehyde Oxidoreductases - chemistry ; Carbon Dioxide - chemistry ; Carbon Monoxide - chemistry ; Catalysis ; Escherichia coli - enzymology ; Gases - chemistry ; Graphite - chemistry ; Hydrogen - chemistry ; Multienzyme Complexes - chemistry ; Oxidation-Reduction ; Oxidoreductases - chemistry ; Thermoanaerobacterium - chemistry ; Water - chemistry</subject><ispartof>Journal of the American Chemical Society, 2009-10, Vol.131 (40), p.14154-14155</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a469t-a981a7bb41b3cd2813060f9bc812dab2ae000410cfc3567ffa00d889bb2a41fc3</citedby><cites>FETCH-LOGICAL-a469t-a981a7bb41b3cd2813060f9bc812dab2ae000410cfc3567ffa00d889bb2a41fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19807170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lazarus, Oliver</creatorcontrib><creatorcontrib>Woolerton, Thomas W</creatorcontrib><creatorcontrib>Parkin, Alison</creatorcontrib><creatorcontrib>Lukey, Michael J</creatorcontrib><creatorcontrib>Reisner, Erwin</creatorcontrib><creatorcontrib>Seravalli, Javier</creatorcontrib><creatorcontrib>Pierce, Elizabeth</creatorcontrib><creatorcontrib>Ragsdale, Stephen W</creatorcontrib><creatorcontrib>Sargent, Frank</creatorcontrib><creatorcontrib>Armstrong, Fraser A</creatorcontrib><title>Water−Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The water−gas shift (WGS) reaction (CO + H2O ⇆ CO2 + H2) is of major industrial significance in the production of H2 from hydrocarbon sources. High temperatures are required, typically in excess of 200 °C, using d-metal catalysts on oxide supports. In our study the WGS process is separated into two half-cell electrochemical reactions (H+ reduction and CO oxidation), catalyzed by enzymes attached to a conducting particle. The H+ reduction reaction is catalyzed by a hydrogenase, Hyd-2, from Escherichia coli, and CO oxidation is catalyzed by a carbon monoxide dehydrogenase (CODH I) from Carboxydothermus hydrogenoformans. This results in a highly efficient heterogeneous catalyst with a turnover frequency, at 30 °C, of at least 2.5 s−1 per minimum functional unit (a CODH/Hyd-2 pair) which is comparable to conventional high-temperature catalysts.</description><subject>Aldehyde Oxidoreductases - chemistry</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon Monoxide - chemistry</subject><subject>Catalysis</subject><subject>Escherichia coli - enzymology</subject><subject>Gases - chemistry</subject><subject>Graphite - chemistry</subject><subject>Hydrogen - chemistry</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - chemistry</subject><subject>Thermoanaerobacterium - chemistry</subject><subject>Water - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkM1KAzEUhYMoWqsLX0CyceFiNJnfZCNIqVUoKP4uw00m006ZzpQkVadP4NpH9ElMaakKrsK958u59x6Ejig5oySk5xPgJMl49raFOjQJSZDQMN1GHUJIGGQsjfbQvrUTX8Yho7toj3JGMpqRDnp-AafN18fnACx-GJeFw_calCubGvfAQdUudI5l67t584779aKdaouXalPncw_WIzwwMBuXTuO7yrtV2tkDtFNAZfXh-u2ip6v-Y-86GN4ObnqXwwDilLsAOKOQSRlTGanc7xaRlBRcKkbDHGQIerkzJapQUZJmRQGE5Ixx6aWY-mYXXax8Z3M51bnStTNQiZkpp2Ba0UAp_ip1ORaj5lXEjEc84d7gdGWgTGOt0cXmLyViGa7YhOvZ49_Dfsh1mh44WQGgrJg0c1P72_8x-gawCYPy</recordid><startdate>20091014</startdate><enddate>20091014</enddate><creator>Lazarus, Oliver</creator><creator>Woolerton, Thomas W</creator><creator>Parkin, Alison</creator><creator>Lukey, Michael J</creator><creator>Reisner, Erwin</creator><creator>Seravalli, Javier</creator><creator>Pierce, Elizabeth</creator><creator>Ragsdale, Stephen W</creator><creator>Sargent, Frank</creator><creator>Armstrong, Fraser A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20091014</creationdate><title>Water−Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets</title><author>Lazarus, Oliver ; Woolerton, Thomas W ; Parkin, Alison ; Lukey, Michael J ; Reisner, Erwin ; Seravalli, Javier ; Pierce, Elizabeth ; Ragsdale, Stephen W ; Sargent, Frank ; Armstrong, Fraser A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a469t-a981a7bb41b3cd2813060f9bc812dab2ae000410cfc3567ffa00d889bb2a41fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aldehyde Oxidoreductases - chemistry</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon Monoxide - chemistry</topic><topic>Catalysis</topic><topic>Escherichia coli - enzymology</topic><topic>Gases - chemistry</topic><topic>Graphite - chemistry</topic><topic>Hydrogen - chemistry</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - chemistry</topic><topic>Thermoanaerobacterium - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazarus, Oliver</creatorcontrib><creatorcontrib>Woolerton, Thomas W</creatorcontrib><creatorcontrib>Parkin, Alison</creatorcontrib><creatorcontrib>Lukey, Michael J</creatorcontrib><creatorcontrib>Reisner, Erwin</creatorcontrib><creatorcontrib>Seravalli, Javier</creatorcontrib><creatorcontrib>Pierce, Elizabeth</creatorcontrib><creatorcontrib>Ragsdale, Stephen W</creatorcontrib><creatorcontrib>Sargent, Frank</creatorcontrib><creatorcontrib>Armstrong, Fraser A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazarus, Oliver</au><au>Woolerton, Thomas W</au><au>Parkin, Alison</au><au>Lukey, Michael J</au><au>Reisner, Erwin</au><au>Seravalli, Javier</au><au>Pierce, Elizabeth</au><au>Ragsdale, Stephen W</au><au>Sargent, Frank</au><au>Armstrong, Fraser A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water−Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2009-10-14</date><risdate>2009</risdate><volume>131</volume><issue>40</issue><spage>14154</spage><epage>14155</epage><pages>14154-14155</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The water−gas shift (WGS) reaction (CO + H2O ⇆ CO2 + H2) is of major industrial significance in the production of H2 from hydrocarbon sources. High temperatures are required, typically in excess of 200 °C, using d-metal catalysts on oxide supports. In our study the WGS process is separated into two half-cell electrochemical reactions (H+ reduction and CO oxidation), catalyzed by enzymes attached to a conducting particle. The H+ reduction reaction is catalyzed by a hydrogenase, Hyd-2, from Escherichia coli, and CO oxidation is catalyzed by a carbon monoxide dehydrogenase (CODH I) from Carboxydothermus hydrogenoformans. This results in a highly efficient heterogeneous catalyst with a turnover frequency, at 30 °C, of at least 2.5 s−1 per minimum functional unit (a CODH/Hyd-2 pair) which is comparable to conventional high-temperature catalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19807170</pmid><doi>10.1021/ja905797w</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2009-10, Vol.131 (40), p.14154-14155 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4893959 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Aldehyde Oxidoreductases - chemistry Carbon Dioxide - chemistry Carbon Monoxide - chemistry Catalysis Escherichia coli - enzymology Gases - chemistry Graphite - chemistry Hydrogen - chemistry Multienzyme Complexes - chemistry Oxidation-Reduction Oxidoreductases - chemistry Thermoanaerobacterium - chemistry Water - chemistry |
title | Water−Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%E2%88%92Gas%20Shift%20Reaction%20Catalyzed%20by%20Redox%20Enzymes%20on%20Conducting%20Graphite%20Platelets&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lazarus,%20Oliver&rft.date=2009-10-14&rft.volume=131&rft.issue=40&rft.spage=14154&rft.epage=14155&rft.pages=14154-14155&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja905797w&rft_dat=%3Cacs_pubme%3Eb021365193%3C/acs_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a469t-a981a7bb41b3cd2813060f9bc812dab2ae000410cfc3567ffa00d889bb2a41fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/19807170&rfr_iscdi=true |