Loading…

Guiding synchrotron X-ray diffraction by multimodal video-rate protein crystal imaging

Synchronous digitization, in which an optical sensor is probed synchronously with the firing of an ultrafast laser, was integrated into an optical imaging station for macromolecular crystal positioning prior to synchrotron X‐ray diffraction. Using the synchronous digitization instrument, second‐harm...

Full description

Saved in:
Bibliographic Details
Published in:Journal of synchrotron radiation 2016-07, Vol.23 (4), p.959-965
Main Authors: Newman, Justin A., Zhang, Shijie, Sullivan, Shane Z., Dow, Ximeng Y., Becker, Michael, Sheedlo, Michael J., Stepanov, Sergey, Carlsen, Mark S., Everly, R. Michael, Das, Chittaranjan, Fischetti, Robert F., Simpson, Garth J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synchronous digitization, in which an optical sensor is probed synchronously with the firing of an ultrafast laser, was integrated into an optical imaging station for macromolecular crystal positioning prior to synchrotron X‐ray diffraction. Using the synchronous digitization instrument, second‐harmonic generation, two‐photon‐excited fluorescence and bright field by laser transmittance were all acquired simultaneously with perfect image registry at up to video‐rate (15 frames s−1). A simple change in the incident wavelength enabled simultaneous imaging by two‐photon‐excited ultraviolet fluorescence, one‐photon‐excited visible fluorescence and laser transmittance. Development of an analytical model for the signal‐to‐noise enhancement afforded by synchronous digitization suggests a 15.6‐fold improvement over previous photon‐counting techniques. This improvement in turn allowed acquisition on nearly an order of magnitude more pixels than the preceding generation of instrumentation and reductions of well over an order of magnitude in image acquisition times. These improvements have allowed detection of protein crystals on the order of 1 µm in thickness under cryogenic conditions in the beamline. These capabilities are well suited to support serial crystallography of crystals approaching 1 µm or less in dimension. Synchronous digitization, in which an optical sensor is probed synchronously with the firing of an ultrafast laser, was integrated into an optical imaging station for macromolecular crystal positioning prior to synchrotron X‐ray diffraction. Using the synchronous digitization instrument, second‐harmonic generation, two‐photon‐excited fluorescence, one‐photon‐excited fluorescence, two‐photon‐excited ultraviolet fluorescence and bright field by laser transmittance were all acquired with perfect image registry at up to video rate (15 frames s−1).
ISSN:1600-5775
0909-0495
1600-5775
DOI:10.1107/S1600577516005919