Loading…
Comparison of 3 T and 1.5 T for T2 magnetic resonance of tissue iron
T2* magnetic resonance of tissue iron concentration has improved the outcome of transfusion dependant anaemia patients. Clinical evaluation is performed at 1.5 T but scanners operating at 3 T are increasing in numbers. There is a paucity of data on the relative merits of iron quantification at 3 T v...
Saved in:
Published in: | Journal of cardiovascular magnetic resonance 2016-07, Vol.18 (1), p.40-40, Article 40 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4409-de876c2bf1cd0fc952aaa48fb46f408221a8f5ee842cad68d0ced9f8cc0c193c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4409-de876c2bf1cd0fc952aaa48fb46f408221a8f5ee842cad68d0ced9f8cc0c193c3 |
container_end_page | 40 |
container_issue | 1 |
container_start_page | 40 |
container_title | Journal of cardiovascular magnetic resonance |
container_volume | 18 |
creator | Alam, Mohammed H Auger, Dominique McGill, Laura-Ann Smith, Gillian C He, Taigang Izgi, Cemil Baksi, A John Wage, Rick Drivas, Peter Firmin, David N Pennell, Dudley J |
description | T2* magnetic resonance of tissue iron concentration has improved the outcome of transfusion dependant anaemia patients. Clinical evaluation is performed at 1.5 T but scanners operating at 3 T are increasing in numbers. There is a paucity of data on the relative merits of iron quantification at 3 T vs 1.5 T.
A total of 104 transfusion dependent anaemia patients and 20 normal volunteers were prospectively recruited to undergo cardiac and liver T2* assessment at both 1.5 T and 3 T. Intra-observer, inter-observer and inter-study reproducibility analysis were performed on 20 randomly selected patients for cardiac and liver T2*.
Association between heart and liver T2* at 1.5 T and 3 T was non-linear with good fit (R (2) = 0.954, p |
doi_str_mv | 10.1186/s12968-016-0259-9 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4938967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A468885695</galeid><sourcerecordid>A468885695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4409-de876c2bf1cd0fc952aaa48fb46f408221a8f5ee842cad68d0ced9f8cc0c193c3</originalsourceid><addsrcrecordid>eNptks2KFDEUhYMozjj6AG6kQBA31eav8rMRhsZRYcBNC-5COnXTnaEqaZOqAd_GZ_HJTNHjOC2SRS653znhXg5CLwleEaLEu0KoFqrFRLSYdrrVj9A56RhtOdXfHtcaa9kKweUZelbKDcZESyyfojMqmSaMiHN0tU7jweZQUmySb9ivn5vGxr4hq24pfcrNhjaj3UWYgmsyVNBGBws8hVJmaEJO8Tl64u1Q4MXdfYG-Xn3YrD-1118-fl5fXreOc6zbHpQUjm49cT32TnfUWsuV33LhOVaUEqt8B6A4dbYXqscOeu2Vc9gRzRy7QO-Pvod5O0LvIE7ZDuaQw2jzD5NsMKedGPZml24N10xpIavB2zuDnL7PUCYzhuJgGGyENBdDFGZSSyFVRV__g96kOcc63kJJTRUV5C-1swOYEH2q_7rF1FxyoZTqhO4qtfoPVU8PY3Apgg_1_UTw5oFgD3aY9iUN8xRSLKcgOYIup1Iy-PtlEGyWlJhjSkxNiVlSYnTVvHq4xXvFn1iw3y9dtrE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807928261</pqid></control><display><type>article</type><title>Comparison of 3 T and 1.5 T for T2 magnetic resonance of tissue iron</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ScienceDirect Journals</source><creator>Alam, Mohammed H ; Auger, Dominique ; McGill, Laura-Ann ; Smith, Gillian C ; He, Taigang ; Izgi, Cemil ; Baksi, A John ; Wage, Rick ; Drivas, Peter ; Firmin, David N ; Pennell, Dudley J</creator><creatorcontrib>Alam, Mohammed H ; Auger, Dominique ; McGill, Laura-Ann ; Smith, Gillian C ; He, Taigang ; Izgi, Cemil ; Baksi, A John ; Wage, Rick ; Drivas, Peter ; Firmin, David N ; Pennell, Dudley J</creatorcontrib><description>T2* magnetic resonance of tissue iron concentration has improved the outcome of transfusion dependant anaemia patients. Clinical evaluation is performed at 1.5 T but scanners operating at 3 T are increasing in numbers. There is a paucity of data on the relative merits of iron quantification at 3 T vs 1.5 T.
A total of 104 transfusion dependent anaemia patients and 20 normal volunteers were prospectively recruited to undergo cardiac and liver T2* assessment at both 1.5 T and 3 T. Intra-observer, inter-observer and inter-study reproducibility analysis were performed on 20 randomly selected patients for cardiac and liver T2*.
Association between heart and liver T2* at 1.5 T and 3 T was non-linear with good fit (R (2) = 0.954, p < 0.001 for heart white-blood (WB) imaging; R (2) = 0.931, p < 0.001 for heart black-blood (BB) imaging; R (2) = 0.993, p < 0.001 for liver imaging). R2* approximately doubled between 1.5 T and 3 T with linear fits for both heart and liver (94, 94 and 105 % respectively). Coefficients of variation for intra- and inter-observer reproducibility, as well as inter-study reproducibility trended to be less good at 3 T (3.5 to 6.5 %) than at 1.5 T (1.4 to 5.7 %) for both heart and liver T2*. Artefact scores for the heart were significantly worse with the 3 T BB sequence (median 4, IQR 2-5) compared with the 1.5 T BB sequence (4 [3-5], p = 0.007).
Heart and liver T2* and R2* at 3 T show close association with 1.5 T values, but there were more artefacts at 3 T and trends to lower reproducibility causing difficulty in quantifying low T2* values with high tissue iron. Therefore T2* imaging at 1.5 T remains the gold standard for clinical practice. However, in centres where only 3 T is available, equivalent values at 1.5 T may be approximated by halving the 3 T tissue R2* with subsequent conversion to T2*.</description><identifier>ISSN: 1097-6647</identifier><identifier>EISSN: 1532-429X</identifier><identifier>DOI: 10.1186/s12968-016-0259-9</identifier><identifier>PMID: 27391316</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adult ; Algorithms ; Analysis ; Anemia ; Blood transfusion ; Cardiomyopathies - diagnosis ; Cardiomyopathies - metabolism ; Care and treatment ; Case-Control Studies ; Chi-Square Distribution ; Female ; Hemosiderosis - diagnosis ; Hemosiderosis - metabolism ; Humans ; Image Interpretation, Computer-Assisted ; Iron - analysis ; Linear Models ; Liver - chemistry ; Liver - diagnostic imaging ; Liver Diseases - diagnosis ; Liver Diseases - metabolism ; Magnetic resonance imaging ; Magnetic Resonance Imaging, Cine ; Male ; Middle Aged ; Myocardium - chemistry ; Nonlinear Dynamics ; Observer Variation ; Predictive Value of Tests ; Prospective Studies ; Reproducibility of Results ; Young Adult</subject><ispartof>Journal of cardiovascular magnetic resonance, 2016-07, Vol.18 (1), p.40-40, Article 40</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>The Author(s). 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4409-de876c2bf1cd0fc952aaa48fb46f408221a8f5ee842cad68d0ced9f8cc0c193c3</citedby><cites>FETCH-LOGICAL-c4409-de876c2bf1cd0fc952aaa48fb46f408221a8f5ee842cad68d0ced9f8cc0c193c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938967/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1807928261?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27391316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alam, Mohammed H</creatorcontrib><creatorcontrib>Auger, Dominique</creatorcontrib><creatorcontrib>McGill, Laura-Ann</creatorcontrib><creatorcontrib>Smith, Gillian C</creatorcontrib><creatorcontrib>He, Taigang</creatorcontrib><creatorcontrib>Izgi, Cemil</creatorcontrib><creatorcontrib>Baksi, A John</creatorcontrib><creatorcontrib>Wage, Rick</creatorcontrib><creatorcontrib>Drivas, Peter</creatorcontrib><creatorcontrib>Firmin, David N</creatorcontrib><creatorcontrib>Pennell, Dudley J</creatorcontrib><title>Comparison of 3 T and 1.5 T for T2 magnetic resonance of tissue iron</title><title>Journal of cardiovascular magnetic resonance</title><addtitle>J Cardiovasc Magn Reson</addtitle><description>T2* magnetic resonance of tissue iron concentration has improved the outcome of transfusion dependant anaemia patients. Clinical evaluation is performed at 1.5 T but scanners operating at 3 T are increasing in numbers. There is a paucity of data on the relative merits of iron quantification at 3 T vs 1.5 T.
A total of 104 transfusion dependent anaemia patients and 20 normal volunteers were prospectively recruited to undergo cardiac and liver T2* assessment at both 1.5 T and 3 T. Intra-observer, inter-observer and inter-study reproducibility analysis were performed on 20 randomly selected patients for cardiac and liver T2*.
Association between heart and liver T2* at 1.5 T and 3 T was non-linear with good fit (R (2) = 0.954, p < 0.001 for heart white-blood (WB) imaging; R (2) = 0.931, p < 0.001 for heart black-blood (BB) imaging; R (2) = 0.993, p < 0.001 for liver imaging). R2* approximately doubled between 1.5 T and 3 T with linear fits for both heart and liver (94, 94 and 105 % respectively). Coefficients of variation for intra- and inter-observer reproducibility, as well as inter-study reproducibility trended to be less good at 3 T (3.5 to 6.5 %) than at 1.5 T (1.4 to 5.7 %) for both heart and liver T2*. Artefact scores for the heart were significantly worse with the 3 T BB sequence (median 4, IQR 2-5) compared with the 1.5 T BB sequence (4 [3-5], p = 0.007).
Heart and liver T2* and R2* at 3 T show close association with 1.5 T values, but there were more artefacts at 3 T and trends to lower reproducibility causing difficulty in quantifying low T2* values with high tissue iron. Therefore T2* imaging at 1.5 T remains the gold standard for clinical practice. However, in centres where only 3 T is available, equivalent values at 1.5 T may be approximated by halving the 3 T tissue R2* with subsequent conversion to T2*.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Anemia</subject><subject>Blood transfusion</subject><subject>Cardiomyopathies - diagnosis</subject><subject>Cardiomyopathies - metabolism</subject><subject>Care and treatment</subject><subject>Case-Control Studies</subject><subject>Chi-Square Distribution</subject><subject>Female</subject><subject>Hemosiderosis - diagnosis</subject><subject>Hemosiderosis - metabolism</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Iron - analysis</subject><subject>Linear Models</subject><subject>Liver - chemistry</subject><subject>Liver - diagnostic imaging</subject><subject>Liver Diseases - diagnosis</subject><subject>Liver Diseases - metabolism</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging, Cine</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Myocardium - chemistry</subject><subject>Nonlinear Dynamics</subject><subject>Observer Variation</subject><subject>Predictive Value of Tests</subject><subject>Prospective Studies</subject><subject>Reproducibility of Results</subject><subject>Young Adult</subject><issn>1097-6647</issn><issn>1532-429X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptks2KFDEUhYMozjj6AG6kQBA31eav8rMRhsZRYcBNC-5COnXTnaEqaZOqAd_GZ_HJTNHjOC2SRS653znhXg5CLwleEaLEu0KoFqrFRLSYdrrVj9A56RhtOdXfHtcaa9kKweUZelbKDcZESyyfojMqmSaMiHN0tU7jweZQUmySb9ivn5vGxr4hq24pfcrNhjaj3UWYgmsyVNBGBws8hVJmaEJO8Tl64u1Q4MXdfYG-Xn3YrD-1118-fl5fXreOc6zbHpQUjm49cT32TnfUWsuV33LhOVaUEqt8B6A4dbYXqscOeu2Vc9gRzRy7QO-Pvod5O0LvIE7ZDuaQw2jzD5NsMKedGPZml24N10xpIavB2zuDnL7PUCYzhuJgGGyENBdDFGZSSyFVRV__g96kOcc63kJJTRUV5C-1swOYEH2q_7rF1FxyoZTqhO4qtfoPVU8PY3Apgg_1_UTw5oFgD3aY9iUN8xRSLKcgOYIup1Iy-PtlEGyWlJhjSkxNiVlSYnTVvHq4xXvFn1iw3y9dtrE</recordid><startdate>20160708</startdate><enddate>20160708</enddate><creator>Alam, Mohammed H</creator><creator>Auger, Dominique</creator><creator>McGill, Laura-Ann</creator><creator>Smith, Gillian C</creator><creator>He, Taigang</creator><creator>Izgi, Cemil</creator><creator>Baksi, A John</creator><creator>Wage, Rick</creator><creator>Drivas, Peter</creator><creator>Firmin, David N</creator><creator>Pennell, Dudley J</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160708</creationdate><title>Comparison of 3 T and 1.5 T for T2 magnetic resonance of tissue iron</title><author>Alam, Mohammed H ; Auger, Dominique ; McGill, Laura-Ann ; Smith, Gillian C ; He, Taigang ; Izgi, Cemil ; Baksi, A John ; Wage, Rick ; Drivas, Peter ; Firmin, David N ; Pennell, Dudley J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4409-de876c2bf1cd0fc952aaa48fb46f408221a8f5ee842cad68d0ced9f8cc0c193c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Anemia</topic><topic>Blood transfusion</topic><topic>Cardiomyopathies - diagnosis</topic><topic>Cardiomyopathies - metabolism</topic><topic>Care and treatment</topic><topic>Case-Control Studies</topic><topic>Chi-Square Distribution</topic><topic>Female</topic><topic>Hemosiderosis - diagnosis</topic><topic>Hemosiderosis - metabolism</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Iron - analysis</topic><topic>Linear Models</topic><topic>Liver - chemistry</topic><topic>Liver - diagnostic imaging</topic><topic>Liver Diseases - diagnosis</topic><topic>Liver Diseases - metabolism</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging, Cine</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Myocardium - chemistry</topic><topic>Nonlinear Dynamics</topic><topic>Observer Variation</topic><topic>Predictive Value of Tests</topic><topic>Prospective Studies</topic><topic>Reproducibility of Results</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Mohammed H</creatorcontrib><creatorcontrib>Auger, Dominique</creatorcontrib><creatorcontrib>McGill, Laura-Ann</creatorcontrib><creatorcontrib>Smith, Gillian C</creatorcontrib><creatorcontrib>He, Taigang</creatorcontrib><creatorcontrib>Izgi, Cemil</creatorcontrib><creatorcontrib>Baksi, A John</creatorcontrib><creatorcontrib>Wage, Rick</creatorcontrib><creatorcontrib>Drivas, Peter</creatorcontrib><creatorcontrib>Firmin, David N</creatorcontrib><creatorcontrib>Pennell, Dudley J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biochemistry Abstracts 1</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cardiovascular magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Mohammed H</au><au>Auger, Dominique</au><au>McGill, Laura-Ann</au><au>Smith, Gillian C</au><au>He, Taigang</au><au>Izgi, Cemil</au><au>Baksi, A John</au><au>Wage, Rick</au><au>Drivas, Peter</au><au>Firmin, David N</au><au>Pennell, Dudley J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of 3 T and 1.5 T for T2 magnetic resonance of tissue iron</atitle><jtitle>Journal of cardiovascular magnetic resonance</jtitle><addtitle>J Cardiovasc Magn Reson</addtitle><date>2016-07-08</date><risdate>2016</risdate><volume>18</volume><issue>1</issue><spage>40</spage><epage>40</epage><pages>40-40</pages><artnum>40</artnum><issn>1097-6647</issn><eissn>1532-429X</eissn><abstract>T2* magnetic resonance of tissue iron concentration has improved the outcome of transfusion dependant anaemia patients. Clinical evaluation is performed at 1.5 T but scanners operating at 3 T are increasing in numbers. There is a paucity of data on the relative merits of iron quantification at 3 T vs 1.5 T.
A total of 104 transfusion dependent anaemia patients and 20 normal volunteers were prospectively recruited to undergo cardiac and liver T2* assessment at both 1.5 T and 3 T. Intra-observer, inter-observer and inter-study reproducibility analysis were performed on 20 randomly selected patients for cardiac and liver T2*.
Association between heart and liver T2* at 1.5 T and 3 T was non-linear with good fit (R (2) = 0.954, p < 0.001 for heart white-blood (WB) imaging; R (2) = 0.931, p < 0.001 for heart black-blood (BB) imaging; R (2) = 0.993, p < 0.001 for liver imaging). R2* approximately doubled between 1.5 T and 3 T with linear fits for both heart and liver (94, 94 and 105 % respectively). Coefficients of variation for intra- and inter-observer reproducibility, as well as inter-study reproducibility trended to be less good at 3 T (3.5 to 6.5 %) than at 1.5 T (1.4 to 5.7 %) for both heart and liver T2*. Artefact scores for the heart were significantly worse with the 3 T BB sequence (median 4, IQR 2-5) compared with the 1.5 T BB sequence (4 [3-5], p = 0.007).
Heart and liver T2* and R2* at 3 T show close association with 1.5 T values, but there were more artefacts at 3 T and trends to lower reproducibility causing difficulty in quantifying low T2* values with high tissue iron. Therefore T2* imaging at 1.5 T remains the gold standard for clinical practice. However, in centres where only 3 T is available, equivalent values at 1.5 T may be approximated by halving the 3 T tissue R2* with subsequent conversion to T2*.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27391316</pmid><doi>10.1186/s12968-016-0259-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6647 |
ispartof | Journal of cardiovascular magnetic resonance, 2016-07, Vol.18 (1), p.40-40, Article 40 |
issn | 1097-6647 1532-429X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4938967 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); ScienceDirect Journals |
subjects | Adult Algorithms Analysis Anemia Blood transfusion Cardiomyopathies - diagnosis Cardiomyopathies - metabolism Care and treatment Case-Control Studies Chi-Square Distribution Female Hemosiderosis - diagnosis Hemosiderosis - metabolism Humans Image Interpretation, Computer-Assisted Iron - analysis Linear Models Liver - chemistry Liver - diagnostic imaging Liver Diseases - diagnosis Liver Diseases - metabolism Magnetic resonance imaging Magnetic Resonance Imaging, Cine Male Middle Aged Myocardium - chemistry Nonlinear Dynamics Observer Variation Predictive Value of Tests Prospective Studies Reproducibility of Results Young Adult |
title | Comparison of 3 T and 1.5 T for T2 magnetic resonance of tissue iron |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%203%C2%A0T%20and%201.5%C2%A0T%20for%20T2%20magnetic%20resonance%20of%20tissue%20iron&rft.jtitle=Journal%20of%20cardiovascular%20magnetic%20resonance&rft.au=Alam,%20Mohammed%20H&rft.date=2016-07-08&rft.volume=18&rft.issue=1&rft.spage=40&rft.epage=40&rft.pages=40-40&rft.artnum=40&rft.issn=1097-6647&rft.eissn=1532-429X&rft_id=info:doi/10.1186/s12968-016-0259-9&rft_dat=%3Cgale_pubme%3EA468885695%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4409-de876c2bf1cd0fc952aaa48fb46f408221a8f5ee842cad68d0ced9f8cc0c193c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1807928261&rft_id=info:pmid/27391316&rft_galeid=A468885695&rfr_iscdi=true |