Loading…

Design approaches to experimental mediation

Identifying causal mechanisms has become a cornerstone of experimental social psychology, and editors in top social psychology journals champion the use of mediation methods, particularly innovative ones when possible (e.g. Halberstadt, 2010, Smith, 2012). Commonly, studies in experimental social ps...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental social psychology 2016-09, Vol.66, p.29-38
Main Authors: Pirlott, Angela G., MacKinnon, David P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Identifying causal mechanisms has become a cornerstone of experimental social psychology, and editors in top social psychology journals champion the use of mediation methods, particularly innovative ones when possible (e.g. Halberstadt, 2010, Smith, 2012). Commonly, studies in experimental social psychology randomly assign participants to levels of the independent variable and measure the mediating and dependent variables, and the mediator is assumed to causally affect the dependent variable. However, participants are not randomly assigned to levels of the mediating variable(s), i.e., the relationship between the mediating and dependent variables is correlational. Although researchers likely know that correlational studies pose a risk of confounding, this problem seems forgotten when thinking about experimental designs randomly assigning participants to levels of the independent variable and measuring the mediator (i.e., “measurement-of-mediation” designs). Experimentally manipulating the mediator provides an approach to solving these problems, yet these methods contain their own set of challenges (e.g., Bullock, Green, & Ha, 2010). We describe types of experimental manipulations targeting the mediator (manipulations demonstrating a causal effect of the mediator on the dependent variable and manipulations targeting the strength of the causal effect of the mediator) and types of experimental designs (double randomization, concurrent double randomization, and parallel), provide published examples of the designs, and discuss the strengths and challenges of each design. Therefore, the goals of this paper include providing a practical guide to manipulation-of-mediator designs in light of their challenges and encouraging researchers to use more rigorous approaches to mediation because manipulation-of-mediator designs strengthen the ability to infer causality of the mediating variable on the dependent variable.
ISSN:0022-1031
1096-0465
DOI:10.1016/j.jesp.2015.09.012