Loading…

In vitro evaluation of thermal frontally polymerized thiol-ene composites as bone augments

Because of the large number of total knee replacement (TKR) surgeries conducted per year, and with projections of increased demand to almost a million primary TKR surgeries per year by 2030 in the United States alone, there is a need to discover more efficient working materials as alternatives to cu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2016-08, Vol.104 (6), p.1152-1160
Main Authors: Totaro, Nicholas P., Murphy, Zachari D., Burcham, Abigail E., King, Connor T., Scherr, Thomas F., Bounds, Christopher O., Dasa, Vinod, Pojman, John A., Hayes, Daniel J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Because of the large number of total knee replacement (TKR) surgeries conducted per year, and with projections of increased demand to almost a million primary TKR surgeries per year by 2030 in the United States alone, there is a need to discover more efficient working materials as alternatives to current bone cements. There is a need for surgeons and hospitals to become more efficient and better control over the operative environment. One area of inefficiency is the cement steps during TKR. Currently the surgeon has very little control over cement polymerization. This leads to an increase in time, waste, and procedural inefficiencies. There is a clear need to create an extended working time, moldable, osteoconductive, and osteoinductive bone augment as a substitution for the current clinically used bone cement where the surgeon has better control over the polymerization process. This study explored several compositions of pentaerythritol-co-trimethylolpropane tris-(3-mercaptopropionate) hydroxyapatite composite materials prepared via benzoyl peroxide-initiated thermal frontal polymerization. The 4:1 acrylate to thiol ratio containing augment material shows promise with a maximal propagation temperature of 160°C ± 10°C, with mechanical strength of 3.65 MPa, and 111% cytocompatibility, relative to the positive control. This frontally polymerized material may have application as an augment with controlled polymerization supporting cemented implants. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1152-1160, 2016.
ISSN:1552-4973
1552-4981
DOI:10.1002/jbm.b.33466