Loading…

Electrostatic forces drive poleward chromosome motions at kinetochores

Recent experiments regarding Ndc80/Hec1 in force generation at kinetochores for chromosome motions have prompted speculation about possible models for interactions between positively charged molecules at kinetochores and negative charge at and near the plus ends of microtubules. A clear picture of h...

Full description

Saved in:
Bibliographic Details
Published in:Cell division 2016-10, Vol.11 (1), p.14-14, Article 14
Main Authors: John Gagliardi, L, Shain, Daniel H
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent experiments regarding Ndc80/Hec1 in force generation at kinetochores for chromosome motions have prompted speculation about possible models for interactions between positively charged molecules at kinetochores and negative charge at and near the plus ends of microtubules. A clear picture of how kinetochores and centrosomes establish and maintain a dynamic coupling to microtubules for force generation during the complex motions of mitosis remains elusive. The current paradigm of molecular cell biology requires that specific molecules, or molecular geometries, for force generation be identified. However, it is possible to explain several different mitotic motions-including poleward force production at kinetochores-within a classical electrostatics approach in terms of experimentally known charge distributions, modeled as surface and volume bound charges interacting over nanometer distances. We propose here that implicating Ndc80/Hec1 as a bound volume positive charge distribution in electrostatic generation of poleward force at kinetochores is most consistent with a wide range of experimental observations on mitotic motions, including polar production of poleward force and chromosome congression.
ISSN:1747-1028
1747-1028
DOI:10.1186/s13008-016-0026-1