Loading…

Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype

Reducing expression of the fetal hemoglobin (HbF) repressor BCL11A leads to a simultaneous increase in γ-globin expression and reduction in β-globin expression. Thus, there is interest in targeting BCL11A as a treatment for β-hemoglobinopathies, including sickle cell disease (SCD) and β-thalassemia....

Full description

Saved in:
Bibliographic Details
Published in:The Journal of clinical investigation 2016-10, Vol.126 (10), p.3868-3878
Main Authors: Brendel, Christian, Guda, Swaroopa, Renella, Raffaele, Bauer, Daniel E, Canver, Matthew C, Kim, Young-Jo, Heeney, Matthew M, Klatt, Denise, Fogel, Jonathan, Milsom, Michael D, Orkin, Stuart H, Gregory, Richard I, Williams, David A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reducing expression of the fetal hemoglobin (HbF) repressor BCL11A leads to a simultaneous increase in γ-globin expression and reduction in β-globin expression. Thus, there is interest in targeting BCL11A as a treatment for β-hemoglobinopathies, including sickle cell disease (SCD) and β-thalassemia. Here, we found that using optimized shRNAs embedded within an miRNA (shRNAmiR) architecture to achieve ubiquitous knockdown of BCL11A profoundly impaired long-term engraftment of both human and mouse hematopoietic stem cells (HSCs) despite a reduction in nonspecific cellular toxicities. BCL11A knockdown was associated with a substantial increase in S/G2-phase human HSCs after engraftment into immunodeficient (NSG) mice, a phenotype that is associated with HSC exhaustion. Lineage-specific, shRNAmiR-mediated suppression of BCL11A in erythroid cells led to stable long-term engraftment of gene-modified cells. Transduced primary normal or SCD human HSCs expressing the lineage-specific BCL11A shRNAmiR gave rise to erythroid cells with up to 90% reduction of BCL11A protein. These erythrocytes demonstrated 60%-70% γ-chain expression (vs. < 10% for negative control) and a corresponding increase in HbF. Transplantation of gene-modified murine HSCs from Berkeley sickle cell mice led to a substantial improvement of sickle-associated hemolytic anemia and reticulocytosis, key pathophysiological biomarkers of SCD. These data form the basis for a clinical trial application for treating sickle cell disease.
ISSN:0021-9738
1558-8238
DOI:10.1172/JCI87885