Loading…
Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training
Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within...
Saved in:
Published in: | Learning & memory (Cold Spring Harbor, N.Y.) N.Y.), 2016-12, Vol.23 (12), p.714-722 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins with an IA-induced release of brain-derived neurotrophic factor (BDNF), which in turn leads to rapid phosphorylation of the cAMP response element-binding protein (pCREB), and a subsequent increase in the level of the ß isoform of the CCAAT/enhancer binding protein (C/EBPß). Increased levels of C/EBPß lead to increased "bdnf" expression. Simulations predicted that an empirically observed delay in the BDNF-pCREB-C/EBPß feedback loop has a profound effect on the dynamics of consolidation. The model also predicted that at least two independent self-sustaining signaling pathways downstream from the BDNF-pCREB-C/EBPß feedback loop contribute to consolidation. Currently, the nature of these downstream pathways is unknown. |
---|---|
ISSN: | 1072-0502 1549-5485 1549-5485 |
DOI: | 10.1101/lm.042044.116 |