Loading…
Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training
Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within...
Saved in:
Published in: | Learning & memory (Cold Spring Harbor, N.Y.) N.Y.), 2016-12, Vol.23 (12), p.714-722 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c442t-fad91251f9b8444f82b85447748655e13b06ad0e571fc8b1f0e5b25483ba60773 |
---|---|
cites | cdi_FETCH-LOGICAL-c442t-fad91251f9b8444f82b85447748655e13b06ad0e571fc8b1f0e5b25483ba60773 |
container_end_page | 722 |
container_issue | 12 |
container_start_page | 714 |
container_title | Learning & memory (Cold Spring Harbor, N.Y.) |
container_volume | 23 |
creator | Zhang, Yili Smolen, Paul Alberini, Cristina M Baxter, Douglas A Byrne, John H |
description | Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins with an IA-induced release of brain-derived neurotrophic factor (BDNF), which in turn leads to rapid phosphorylation of the cAMP response element-binding protein (pCREB), and a subsequent increase in the level of the ß isoform of the CCAAT/enhancer binding protein (C/EBPß). Increased levels of C/EBPß lead to increased "bdnf" expression. Simulations predicted that an empirically observed delay in the BDNF-pCREB-C/EBPß feedback loop has a profound effect on the dynamics of consolidation. The model also predicted that at least two independent self-sustaining signaling pathways downstream from the BDNF-pCREB-C/EBPß feedback loop contribute to consolidation. Currently, the nature of these downstream pathways is unknown. |
doi_str_mv | 10.1101/lm.042044.116 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5110990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1120586</ericid><sourcerecordid>1846366609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-fad91251f9b8444f82b85447748655e13b06ad0e571fc8b1f0e5b25483ba60773</originalsourceid><addsrcrecordid>eNqNkcFvFCEYxYnR2Fo9etRw9DItMMDAxaSuXVuzrR7qmQDDtCgDU5hZ0_9ezLYbvfXE9-X9eOHxAHiL0THGCJ-E8RhRgiitK38GDjGjsmFUsOd1Rh1pEEPkALwq5SdCqOsofgkOSCexIF13CMoqjdMy69mnqAO8TL0LMA1Qw--p-NlvHfz0-WoN1871RttfcJPSBH2E536aktXjVG9duSWnWOA6hZB--3gDL-KtN35O-R6ebpPvdbQOXmftY1VfgxeDDsW9eTiPwI_12fXqvNl8-3KxOt00llIyN4PuJSYMD9IISukgiBGM0hpBcMYcbg3iukeOdXiwwuChjobU6K3RvCZtj8DHne-0mNH11sU566Cm7Eed71XSXv2vRH-rbtJWsfqzUqJq8OHBIKe7xZVZjb5YF4KOLi1FYcEklW0n8BNQylvOOZIVbXaozamU7Ib9izBSfztVYVS7TuvKK__-3xh7-rHECrzbAS57u5fPvmJMEBO8_QOohaa0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846366609</pqid></control><display><type>article</type><title>Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training</title><source>PubMed Central (Open Access)</source><source>Elektronische Zeitschriftenbibliothek (Open access)</source><source>ERIC</source><creator>Zhang, Yili ; Smolen, Paul ; Alberini, Cristina M ; Baxter, Douglas A ; Byrne, John H</creator><creatorcontrib>Zhang, Yili ; Smolen, Paul ; Alberini, Cristina M ; Baxter, Douglas A ; Byrne, John H</creatorcontrib><description>Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins with an IA-induced release of brain-derived neurotrophic factor (BDNF), which in turn leads to rapid phosphorylation of the cAMP response element-binding protein (pCREB), and a subsequent increase in the level of the ß isoform of the CCAAT/enhancer binding protein (C/EBPß). Increased levels of C/EBPß lead to increased "bdnf" expression. Simulations predicted that an empirically observed delay in the BDNF-pCREB-C/EBPß feedback loop has a profound effect on the dynamics of consolidation. The model also predicted that at least two independent self-sustaining signaling pathways downstream from the BDNF-pCREB-C/EBPß feedback loop contribute to consolidation. Currently, the nature of these downstream pathways is unknown.</description><identifier>ISSN: 1072-0502</identifier><identifier>ISSN: 1549-5485</identifier><identifier>EISSN: 1549-5485</identifier><identifier>DOI: 10.1101/lm.042044.116</identifier><identifier>PMID: 27918277</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animal Behavior ; Animals ; Brain Hemisphere Functions ; Brief Communication ; Equations (Mathematics) ; Feedback (Response) ; Inhibition ; Memory ; Molecular Structure ; Simulation ; Training</subject><ispartof>Learning & memory (Cold Spring Harbor, N.Y.), 2016-12, Vol.23 (12), p.714-722</ispartof><rights>2016 Zhang et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-fad91251f9b8444f82b85447748655e13b06ad0e571fc8b1f0e5b25483ba60773</citedby><cites>FETCH-LOGICAL-c442t-fad91251f9b8444f82b85447748655e13b06ad0e571fc8b1f0e5b25483ba60773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110990/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110990/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1120586$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27918277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yili</creatorcontrib><creatorcontrib>Smolen, Paul</creatorcontrib><creatorcontrib>Alberini, Cristina M</creatorcontrib><creatorcontrib>Baxter, Douglas A</creatorcontrib><creatorcontrib>Byrne, John H</creatorcontrib><title>Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training</title><title>Learning & memory (Cold Spring Harbor, N.Y.)</title><addtitle>Learn Mem</addtitle><description>Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins with an IA-induced release of brain-derived neurotrophic factor (BDNF), which in turn leads to rapid phosphorylation of the cAMP response element-binding protein (pCREB), and a subsequent increase in the level of the ß isoform of the CCAAT/enhancer binding protein (C/EBPß). Increased levels of C/EBPß lead to increased "bdnf" expression. Simulations predicted that an empirically observed delay in the BDNF-pCREB-C/EBPß feedback loop has a profound effect on the dynamics of consolidation. The model also predicted that at least two independent self-sustaining signaling pathways downstream from the BDNF-pCREB-C/EBPß feedback loop contribute to consolidation. Currently, the nature of these downstream pathways is unknown.</description><subject>Animal Behavior</subject><subject>Animals</subject><subject>Brain Hemisphere Functions</subject><subject>Brief Communication</subject><subject>Equations (Mathematics)</subject><subject>Feedback (Response)</subject><subject>Inhibition</subject><subject>Memory</subject><subject>Molecular Structure</subject><subject>Simulation</subject><subject>Training</subject><issn>1072-0502</issn><issn>1549-5485</issn><issn>1549-5485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNqNkcFvFCEYxYnR2Fo9etRw9DItMMDAxaSuXVuzrR7qmQDDtCgDU5hZ0_9ezLYbvfXE9-X9eOHxAHiL0THGCJ-E8RhRgiitK38GDjGjsmFUsOd1Rh1pEEPkALwq5SdCqOsofgkOSCexIF13CMoqjdMy69mnqAO8TL0LMA1Qw--p-NlvHfz0-WoN1871RttfcJPSBH2E536aktXjVG9duSWnWOA6hZB--3gDL-KtN35O-R6ebpPvdbQOXmftY1VfgxeDDsW9eTiPwI_12fXqvNl8-3KxOt00llIyN4PuJSYMD9IISukgiBGM0hpBcMYcbg3iukeOdXiwwuChjobU6K3RvCZtj8DHne-0mNH11sU566Cm7Eed71XSXv2vRH-rbtJWsfqzUqJq8OHBIKe7xZVZjb5YF4KOLi1FYcEklW0n8BNQylvOOZIVbXaozamU7Ib9izBSfztVYVS7TuvKK__-3xh7-rHECrzbAS57u5fPvmJMEBO8_QOohaa0</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Zhang, Yili</creator><creator>Smolen, Paul</creator><creator>Alberini, Cristina M</creator><creator>Baxter, Douglas A</creator><creator>Byrne, John H</creator><general>Cold Spring Harbor Laboratory Press</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QG</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>201612</creationdate><title>Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training</title><author>Zhang, Yili ; Smolen, Paul ; Alberini, Cristina M ; Baxter, Douglas A ; Byrne, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-fad91251f9b8444f82b85447748655e13b06ad0e571fc8b1f0e5b25483ba60773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animal Behavior</topic><topic>Animals</topic><topic>Brain Hemisphere Functions</topic><topic>Brief Communication</topic><topic>Equations (Mathematics)</topic><topic>Feedback (Response)</topic><topic>Inhibition</topic><topic>Memory</topic><topic>Molecular Structure</topic><topic>Simulation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yili</creatorcontrib><creatorcontrib>Smolen, Paul</creatorcontrib><creatorcontrib>Alberini, Cristina M</creatorcontrib><creatorcontrib>Baxter, Douglas A</creatorcontrib><creatorcontrib>Byrne, John H</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Learning & memory (Cold Spring Harbor, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yili</au><au>Smolen, Paul</au><au>Alberini, Cristina M</au><au>Baxter, Douglas A</au><au>Byrne, John H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1120586</ericid><atitle>Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training</atitle><jtitle>Learning & memory (Cold Spring Harbor, N.Y.)</jtitle><addtitle>Learn Mem</addtitle><date>2016-12</date><risdate>2016</risdate><volume>23</volume><issue>12</issue><spage>714</spage><epage>722</epage><pages>714-722</pages><issn>1072-0502</issn><issn>1549-5485</issn><eissn>1549-5485</eissn><abstract>Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins with an IA-induced release of brain-derived neurotrophic factor (BDNF), which in turn leads to rapid phosphorylation of the cAMP response element-binding protein (pCREB), and a subsequent increase in the level of the ß isoform of the CCAAT/enhancer binding protein (C/EBPß). Increased levels of C/EBPß lead to increased "bdnf" expression. Simulations predicted that an empirically observed delay in the BDNF-pCREB-C/EBPß feedback loop has a profound effect on the dynamics of consolidation. The model also predicted that at least two independent self-sustaining signaling pathways downstream from the BDNF-pCREB-C/EBPß feedback loop contribute to consolidation. Currently, the nature of these downstream pathways is unknown.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>27918277</pmid><doi>10.1101/lm.042044.116</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-0502 |
ispartof | Learning & memory (Cold Spring Harbor, N.Y.), 2016-12, Vol.23 (12), p.714-722 |
issn | 1072-0502 1549-5485 1549-5485 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5110990 |
source | PubMed Central (Open Access); Elektronische Zeitschriftenbibliothek (Open access); ERIC |
subjects | Animal Behavior Animals Brain Hemisphere Functions Brief Communication Equations (Mathematics) Feedback (Response) Inhibition Memory Molecular Structure Simulation Training |
title | Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Model%20of%20a%20Positive%20BDNF%20Feedback%20Loop%20in%20Hippocampal%20Neurons%20Following%20Inhibitory%20Avoidance%20Training&rft.jtitle=Learning%20&%20memory%20(Cold%20Spring%20Harbor,%20N.Y.)&rft.au=Zhang,%20Yili&rft.date=2016-12&rft.volume=23&rft.issue=12&rft.spage=714&rft.epage=722&rft.pages=714-722&rft.issn=1072-0502&rft.eissn=1549-5485&rft_id=info:doi/10.1101/lm.042044.116&rft_dat=%3Cproquest_pubme%3E1846366609%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-fad91251f9b8444f82b85447748655e13b06ad0e571fc8b1f0e5b25483ba60773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1846366609&rft_id=info:pmid/27918277&rft_ericid=EJ1120586&rfr_iscdi=true |