Loading…
Evolving nature of the AP2 α-appendage hub during clathrin-coated vesicle endocytosis
Clathrin‐mediated endocytosis involves the assembly of a network of proteins that select cargo, modify membrane shape and drive invagination, vesicle scission and uncoating. This network is initially assembled around adaptor protein (AP) appendage domains, which are protein interaction hubs. Using c...
Saved in:
Published in: | The EMBO journal 2004-11, Vol.23 (22), p.4371-4383 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Clathrin‐mediated endocytosis involves the assembly of a network of proteins that select cargo, modify membrane shape and drive invagination, vesicle scission and uncoating. This network is initially assembled around adaptor protein (AP) appendage domains, which are protein interaction hubs. Using crystallography, we show that FxDxF and WVxF peptide motifs from synaptojanin bind to distinct subdomains on α‐appendages, called ‘top’ and 'side’ sites. Appendages use both these sites to interact with their binding partners
in vitro
and
in vivo
. Occupation of both sites simultaneously results in high‐affinity reversible interactions with lone appendages (e.g. eps15 and epsin1). Proteins with multiple copies of only one type of motif bind multiple appendages and so will aid adaptor clustering. These clustered α(appendage)‐hubs have altered properties where they can sample many different binding partners, which in turn can interact with each other and indirectly with clathrin. In the final coated vesicle, most appendage binding partners are absent and thus the functional status of the appendage domain as an interaction hub is temporal and transitory giving directionality to vesicle assembly. |
---|---|
ISSN: | 0261-4189 1460-2075 |
DOI: | 10.1038/sj.emboj.7600445 |