Loading…
Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel)
Symbiotic bacteria affect insect physiology and ecology. They may also mediate insecticide resistance within their hosts and thereby impact pest and vector control practices. Here, we document a novel mechanism of insecticide resistance in which a gut symbiont of the tephritid pest fruit fly Bactroc...
Saved in:
Published in: | Microbiome 2017-02, Vol.5 (1), p.13-13, Article 13 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Symbiotic bacteria affect insect physiology and ecology. They may also mediate insecticide resistance within their hosts and thereby impact pest and vector control practices. Here, we document a novel mechanism of insecticide resistance in which a gut symbiont of the tephritid pest fruit fly Bactrocera dorsalis enhances resistance to the organophosphate insecticide trichlorphon.
We demonstrated that the gut symbiont Citrobacter sp. (CF-BD) plays a key role in the degradation of trichlorphon. Based on a comparative genomics analysis with other Citrobacter species, phosphatase hydrolase genes were identified in CF-BD. These CF-BD genes had higher expression when trichlorphon was present. Bactrocera dorsalis inoculated with isolated CF-BD obtained higher trichlorphon resistance, while antibiotic-treated flies were less resistant confirming the key role of CF-BD in insecticide resistance.
Our findings suggest that symbiont-mediated insecticide resistance can readily develop in B. dorsalis and may represent a more widely relevant insecticide resistance mechanism than previously recognized. |
---|---|
ISSN: | 2049-2618 2049-2618 |
DOI: | 10.1186/s40168-017-0236-z |