Loading…

Transcriptional profiling identifies the long noncoding RNA plasmacytoma variant translocation ( PVT1 ) as a novel regulator of the asthmatic phenotype in human airway smooth muscle

Background The mechanism underlying nonsevere and severe asthma remains unclear, although it is commonly associated with increased airway smooth muscle (ASM) mass. Long noncoding RNAs (lncRNAs) are known to be important in regulating healthy primary airway smooth muscle cells (ASMCs), whereas change...

Full description

Saved in:
Bibliographic Details
Published in:Journal of allergy and clinical immunology 2017-03, Vol.139 (3), p.780-789
Main Authors: Austin, Philip J., MSc, Tsitsiou, Eleni, PhD, Boardman, Charlotte, MD, Jones, Simon W., PhD, Lindsay, Mark A., PhD, Adcock, Ian M., PhD, Chung, Kian Fan, MD, PhD, Perry, Mark M., PhD
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background The mechanism underlying nonsevere and severe asthma remains unclear, although it is commonly associated with increased airway smooth muscle (ASM) mass. Long noncoding RNAs (lncRNAs) are known to be important in regulating healthy primary airway smooth muscle cells (ASMCs), whereas changed expression has been observed in CD8 T cells from patients with severe asthma. Methods Primary ASMCs were isolated from healthy subjects (n = 9) and patients classified as having nonsevere (n = 9) or severe (n = 9) asthma. ASMCs were exposed to dexamethasone and FCS. mRNA and lncRNA expression was measured by using a microarray and quantitative real-time PCR. Bioinformatic analysis was used to examine relevant biological pathways. Finally, the lncRNA plasmacytoma variant translocation 1 (PVT1) was inhibited by transfection of primary ASMCs with small interfering RNAs, and the effect on ASMC phenotype was examined. Results The mRNA expression profile was significantly different between patient groups after exposure to dexamethasone and FCS, and these were associated with biological pathways that might be relevant to the pathogenesis of asthma, including cellular proliferation and pathways associated with glucocorticoid activity. We also observed a significant change in lncRNA expression, yet the expression of only one lncRNA (PVT1) is decreased in patients with corticosteroid-sensitive nonsevere asthma and increased in patients with corticosteroid-insensitive severe asthma. Subsequent targeting studies demonstrated the importance of this lncRNA in controlling both proliferation and IL-6 release in ASMCs from patients with severe asthma. Conclusions lncRNAs are associated with the aberrant phenotype observed in ASMCs from asthmatic patients. Targeting PVT1 might be effective in reducing airway remodeling in asthmatic patients.
ISSN:0091-6749
1097-6825
1097-6825
DOI:10.1016/j.jaci.2016.06.014