Loading…
CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function
Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), a potent immunoregulatory molecule, can down-regulate T-cell activation and inhibit anti-tumor immune response. This study showed that LPS-stimulated human dendritic cells (DCs) decreased the expression of HLA-DR, CD83 and costimulatory molecules...
Saved in:
Published in: | Oncotarget 2017-02, Vol.8 (8), p.13703-13715 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), a potent immunoregulatory molecule, can down-regulate T-cell activation and inhibit anti-tumor immune response. This study showed that LPS-stimulated human dendritic cells (DCs) decreased the expression of HLA-DR, CD83 and costimulatory molecules (CD40, CD80 and CD86) following coculturing with CTLA-4+ breast cancer cells. Moreover, the suppressed DCs further inhibited proliferation of allogeneic CD4+/CD8+ T-cells, differentiation of Th1 and function of cytotoxic lymphocytes (CTLs). However, CTLA-4 blockade in breast cancer cells could recover DC maturation and cytokine production, elevate antigen-presenting function of DCs, reverse Th1/CTLs response and cytokine secretion. Subsequent study demonstrated that the activation of extracellular-signal regulated kinase and signal transducer and activator of transcription 3 of DCs caused by CTLA-4+ breast cancer cells were the predominant mechanism of DC suppression. In addition, CTLA-4 blockade treatment also directly inhibited proliferation and induced apoptosis of CTLA-4+ breast cancer cells. Collectively, CTLA-4 was expressed and functional on human breast cancer cells through influencing maturation and function of DCs in vitro, and CTLA-4 blockage not only recovered the antigen-presenting function of DCs and T-cells activation but also suppressed the biological activity of breast cancer cells themselves. This study highlights the clinical application of CTLA-4 blockade therapy in breast cancer. |
---|---|
ISSN: | 1949-2553 1949-2553 |
DOI: | 10.18632/oncotarget.14626 |