Loading…

RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance

The polymorphic barley (Hordeum vulgare) Mla locus harbors allelic race-specific resistance (R) genes to the powdery mildew fungus Blumeria graminis f sp hordei. The highly sequence-related MLA proteins contain an N-terminal coiled-coil structure, a central nucleotide binding (NB) site, a Leu-rich r...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 2004-12, Vol.16 (12), p.3480-3495
Main Authors: Bieri, S, Mauch, S, Shen, Q.H, Peart, J, Devoto, A, Casais, C, Ceron, F, Schulze, S, Steinbiss, H.H, Shirasu, K
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c590t-8423bad9e70bc516e1843c10db39052ecfedcf37a33461c47b53c5aebb24d6f23
cites
container_end_page 3495
container_issue 12
container_start_page 3480
container_title The Plant cell
container_volume 16
creator Bieri, S
Mauch, S
Shen, Q.H
Peart, J
Devoto, A
Casais, C
Ceron, F
Schulze, S
Steinbiss, H.H
Shirasu, K
description The polymorphic barley (Hordeum vulgare) Mla locus harbors allelic race-specific resistance (R) genes to the powdery mildew fungus Blumeria graminis f sp hordei. The highly sequence-related MLA proteins contain an N-terminal coiled-coil structure, a central nucleotide binding (NB) site, a Leu-rich repeat (LRR) region, and a C-terminal non-LRR region. Using transgenic barley lines expressing epitope-tagged MLA1 and MLA6 derivatives driven by native regulatory sequences, we show a reversible and salt concentration-dependent distribution of the intracellular MLA proteins in soluble and membrane-associated pools. A posttranscriptional process directs fourfold greater accumulation of MLA1 over MLA6. Unexpectedly, in rar1 mutant plants that are compromised for MLA6 but not MLA1 resistance, the steady state level of both MLA isoforms is reduced. Furthermore, differential steady state levels of MLA1/MLA6 hybrid proteins correlate with their requirement for RAR1; the RAR1-independent hybrid protein accumulates to higher levels and the RAR1-dependent one to lower levels. Interestingly, yeast two-hybrid studies reveal that the LRR domains of RAR1-independent but not RAR1-dependent MLA isoforms interact with SGT1, a RAR1 interacting protein required for the function of many NB-LRR type R proteins. Our findings implicate the existence of a conserved mechanism to reach minimal NB-LRR R protein thresholds that are needed to trigger effective resistance responses.
doi_str_mv 10.1105/tpc.104.026682
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_535887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3872364</jstor_id><sourcerecordid>3872364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-8423bad9e70bc516e1843c10db39052ecfedcf37a33461c47b53c5aebb24d6f23</originalsourceid><addsrcrecordid>eNqFkk9v1DAQxSMEoqVw5YTA4sAti_87OXBYVbQgLUIqVOJmOc64eJWNt7ZTab8FHxlHWZXChdOM9H4z82y9qnpJ8IoQLN7nvV0RzFeYStnQR9UpEYzWtG1-PC495rjmUpCT6llKW4wxUaR9Wp0QIXijODmtfl2trwjah-Szv4PhgGwYcwxDQimD6Q-lmAxogCImFBzqTBzggL5s1ihC8kUeLaB9DBn8mJAZewSj6QYoGybnvPUw5hmXyFg77abBZB9G5EJE4BzY-e6DVc-rJ84MCV4c61l1ffHx-_mnevP18vP5elNb0eJcN5yyzvQtKNxZQSSQhjNLcN-xFgsK1kFvHVOGMS6J5aoTzAoDXUd5Lx1lZ9WHZe9-6naFLS6jGfQ--p2JBx2M138ro_-pb8KdFkw0jSrz747zMdxOkLLe-WRhGMwIYUpaKiIwbfl_QaKUUIrN4Nt_wG2Y4lg-QVNSLjaMzLZXC2RjSCmCu3dMsJ4ToUsiSs_1kogy8PrhO__gxwgU4NUCbFMO8V5njaJMzq7eLLIzQZub6JO-_kYxYRi3ssWNZL8BH8jIIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218738312</pqid></control><display><type>article</type><title>RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Bieri, S ; Mauch, S ; Shen, Q.H ; Peart, J ; Devoto, A ; Casais, C ; Ceron, F ; Schulze, S ; Steinbiss, H.H ; Shirasu, K</creator><creatorcontrib>Bieri, S ; Mauch, S ; Shen, Q.H ; Peart, J ; Devoto, A ; Casais, C ; Ceron, F ; Schulze, S ; Steinbiss, H.H ; Shirasu, K</creatorcontrib><description>The polymorphic barley (Hordeum vulgare) Mla locus harbors allelic race-specific resistance (R) genes to the powdery mildew fungus Blumeria graminis f sp hordei. The highly sequence-related MLA proteins contain an N-terminal coiled-coil structure, a central nucleotide binding (NB) site, a Leu-rich repeat (LRR) region, and a C-terminal non-LRR region. Using transgenic barley lines expressing epitope-tagged MLA1 and MLA6 derivatives driven by native regulatory sequences, we show a reversible and salt concentration-dependent distribution of the intracellular MLA proteins in soluble and membrane-associated pools. A posttranscriptional process directs fourfold greater accumulation of MLA1 over MLA6. Unexpectedly, in rar1 mutant plants that are compromised for MLA6 but not MLA1 resistance, the steady state level of both MLA isoforms is reduced. Furthermore, differential steady state levels of MLA1/MLA6 hybrid proteins correlate with their requirement for RAR1; the RAR1-independent hybrid protein accumulates to higher levels and the RAR1-dependent one to lower levels. Interestingly, yeast two-hybrid studies reveal that the LRR domains of RAR1-independent but not RAR1-dependent MLA isoforms interact with SGT1, a RAR1 interacting protein required for the function of many NB-LRR type R proteins. Our findings implicate the existence of a conserved mechanism to reach minimal NB-LRR R protein thresholds that are needed to trigger effective resistance responses.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.104.026682</identifier><identifier>PMID: 15548741</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Airborne microorganisms ; Arabidopsis Proteins - metabolism ; Barley ; Blumeria graminis ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Cycle Proteins - metabolism ; Cell Membrane - metabolism ; cell membranes ; Chimeras ; Disease resistance ; Down-Regulation - genetics ; Epitopes ; Erysiphe graminis f. sp. hordei ; Fungi - physiology ; Gels ; gene expression ; Homeostasis - physiology ; Hordeum - genetics ; Hordeum - metabolism ; Hordeum - microbiology ; Hordeum vulgare ; Host-Parasite Interactions - physiology ; Immunity, Innate - genetics ; Immunity, Innate - physiology ; leaves ; MLA proteins ; Plant cells ; Plant Diseases - genetics ; Plant Diseases - microbiology ; plant pathogenic fungi ; plant proteins ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Plants, Genetically Modified - microbiology ; powdery mildew ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Protein Structure, Tertiary - physiology ; Proteins ; RNA Processing, Post-Transcriptional - physiology ; Transgenes ; Up-Regulation - genetics ; Yeasts</subject><ispartof>The Plant cell, 2004-12, Vol.16 (12), p.3480-3495</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Physiologists Dec 2004</rights><rights>Copyright © 2004, American Society of Plant Biologists 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-8423bad9e70bc516e1843c10db39052ecfedcf37a33461c47b53c5aebb24d6f23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3872364$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3872364$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15548741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bieri, S</creatorcontrib><creatorcontrib>Mauch, S</creatorcontrib><creatorcontrib>Shen, Q.H</creatorcontrib><creatorcontrib>Peart, J</creatorcontrib><creatorcontrib>Devoto, A</creatorcontrib><creatorcontrib>Casais, C</creatorcontrib><creatorcontrib>Ceron, F</creatorcontrib><creatorcontrib>Schulze, S</creatorcontrib><creatorcontrib>Steinbiss, H.H</creatorcontrib><creatorcontrib>Shirasu, K</creatorcontrib><title>RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>The polymorphic barley (Hordeum vulgare) Mla locus harbors allelic race-specific resistance (R) genes to the powdery mildew fungus Blumeria graminis f sp hordei. The highly sequence-related MLA proteins contain an N-terminal coiled-coil structure, a central nucleotide binding (NB) site, a Leu-rich repeat (LRR) region, and a C-terminal non-LRR region. Using transgenic barley lines expressing epitope-tagged MLA1 and MLA6 derivatives driven by native regulatory sequences, we show a reversible and salt concentration-dependent distribution of the intracellular MLA proteins in soluble and membrane-associated pools. A posttranscriptional process directs fourfold greater accumulation of MLA1 over MLA6. Unexpectedly, in rar1 mutant plants that are compromised for MLA6 but not MLA1 resistance, the steady state level of both MLA isoforms is reduced. Furthermore, differential steady state levels of MLA1/MLA6 hybrid proteins correlate with their requirement for RAR1; the RAR1-independent hybrid protein accumulates to higher levels and the RAR1-dependent one to lower levels. Interestingly, yeast two-hybrid studies reveal that the LRR domains of RAR1-independent but not RAR1-dependent MLA isoforms interact with SGT1, a RAR1 interacting protein required for the function of many NB-LRR type R proteins. Our findings implicate the existence of a conserved mechanism to reach minimal NB-LRR R protein thresholds that are needed to trigger effective resistance responses.</description><subject>Airborne microorganisms</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Barley</subject><subject>Blumeria graminis</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>cell membranes</subject><subject>Chimeras</subject><subject>Disease resistance</subject><subject>Down-Regulation - genetics</subject><subject>Epitopes</subject><subject>Erysiphe graminis f. sp. hordei</subject><subject>Fungi - physiology</subject><subject>Gels</subject><subject>gene expression</subject><subject>Homeostasis - physiology</subject><subject>Hordeum - genetics</subject><subject>Hordeum - metabolism</subject><subject>Hordeum - microbiology</subject><subject>Hordeum vulgare</subject><subject>Host-Parasite Interactions - physiology</subject><subject>Immunity, Innate - genetics</subject><subject>Immunity, Innate - physiology</subject><subject>leaves</subject><subject>MLA proteins</subject><subject>Plant cells</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>plant pathogenic fungi</subject><subject>plant proteins</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Plants, Genetically Modified - microbiology</subject><subject>powdery mildew</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Proteins</subject><subject>RNA Processing, Post-Transcriptional - physiology</subject><subject>Transgenes</subject><subject>Up-Regulation - genetics</subject><subject>Yeasts</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkk9v1DAQxSMEoqVw5YTA4sAti_87OXBYVbQgLUIqVOJmOc64eJWNt7ZTab8FHxlHWZXChdOM9H4z82y9qnpJ8IoQLN7nvV0RzFeYStnQR9UpEYzWtG1-PC495rjmUpCT6llKW4wxUaR9Wp0QIXijODmtfl2trwjah-Szv4PhgGwYcwxDQimD6Q-lmAxogCImFBzqTBzggL5s1ihC8kUeLaB9DBn8mJAZewSj6QYoGybnvPUw5hmXyFg77abBZB9G5EJE4BzY-e6DVc-rJ84MCV4c61l1ffHx-_mnevP18vP5elNb0eJcN5yyzvQtKNxZQSSQhjNLcN-xFgsK1kFvHVOGMS6J5aoTzAoDXUd5Lx1lZ9WHZe9-6naFLS6jGfQ--p2JBx2M138ro_-pb8KdFkw0jSrz747zMdxOkLLe-WRhGMwIYUpaKiIwbfl_QaKUUIrN4Nt_wG2Y4lg-QVNSLjaMzLZXC2RjSCmCu3dMsJ4ToUsiSs_1kogy8PrhO__gxwgU4NUCbFMO8V5njaJMzq7eLLIzQZub6JO-_kYxYRi3ssWNZL8BH8jIIg</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Bieri, S</creator><creator>Mauch, S</creator><creator>Shen, Q.H</creator><creator>Peart, J</creator><creator>Devoto, A</creator><creator>Casais, C</creator><creator>Ceron, F</creator><creator>Schulze, S</creator><creator>Steinbiss, H.H</creator><creator>Shirasu, K</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20041201</creationdate><title>RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance</title><author>Bieri, S ; Mauch, S ; Shen, Q.H ; Peart, J ; Devoto, A ; Casais, C ; Ceron, F ; Schulze, S ; Steinbiss, H.H ; Shirasu, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-8423bad9e70bc516e1843c10db39052ecfedcf37a33461c47b53c5aebb24d6f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Airborne microorganisms</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Barley</topic><topic>Blumeria graminis</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>cell membranes</topic><topic>Chimeras</topic><topic>Disease resistance</topic><topic>Down-Regulation - genetics</topic><topic>Epitopes</topic><topic>Erysiphe graminis f. sp. hordei</topic><topic>Fungi - physiology</topic><topic>Gels</topic><topic>gene expression</topic><topic>Homeostasis - physiology</topic><topic>Hordeum - genetics</topic><topic>Hordeum - metabolism</topic><topic>Hordeum - microbiology</topic><topic>Hordeum vulgare</topic><topic>Host-Parasite Interactions - physiology</topic><topic>Immunity, Innate - genetics</topic><topic>Immunity, Innate - physiology</topic><topic>leaves</topic><topic>MLA proteins</topic><topic>Plant cells</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>plant pathogenic fungi</topic><topic>plant proteins</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Plants, Genetically Modified - microbiology</topic><topic>powdery mildew</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Proteins</topic><topic>RNA Processing, Post-Transcriptional - physiology</topic><topic>Transgenes</topic><topic>Up-Regulation - genetics</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bieri, S</creatorcontrib><creatorcontrib>Mauch, S</creatorcontrib><creatorcontrib>Shen, Q.H</creatorcontrib><creatorcontrib>Peart, J</creatorcontrib><creatorcontrib>Devoto, A</creatorcontrib><creatorcontrib>Casais, C</creatorcontrib><creatorcontrib>Ceron, F</creatorcontrib><creatorcontrib>Schulze, S</creatorcontrib><creatorcontrib>Steinbiss, H.H</creatorcontrib><creatorcontrib>Shirasu, K</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bieri, S</au><au>Mauch, S</au><au>Shen, Q.H</au><au>Peart, J</au><au>Devoto, A</au><au>Casais, C</au><au>Ceron, F</au><au>Schulze, S</au><au>Steinbiss, H.H</au><au>Shirasu, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>16</volume><issue>12</issue><spage>3480</spage><epage>3495</epage><pages>3480-3495</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>The polymorphic barley (Hordeum vulgare) Mla locus harbors allelic race-specific resistance (R) genes to the powdery mildew fungus Blumeria graminis f sp hordei. The highly sequence-related MLA proteins contain an N-terminal coiled-coil structure, a central nucleotide binding (NB) site, a Leu-rich repeat (LRR) region, and a C-terminal non-LRR region. Using transgenic barley lines expressing epitope-tagged MLA1 and MLA6 derivatives driven by native regulatory sequences, we show a reversible and salt concentration-dependent distribution of the intracellular MLA proteins in soluble and membrane-associated pools. A posttranscriptional process directs fourfold greater accumulation of MLA1 over MLA6. Unexpectedly, in rar1 mutant plants that are compromised for MLA6 but not MLA1 resistance, the steady state level of both MLA isoforms is reduced. Furthermore, differential steady state levels of MLA1/MLA6 hybrid proteins correlate with their requirement for RAR1; the RAR1-independent hybrid protein accumulates to higher levels and the RAR1-dependent one to lower levels. Interestingly, yeast two-hybrid studies reveal that the LRR domains of RAR1-independent but not RAR1-dependent MLA isoforms interact with SGT1, a RAR1 interacting protein required for the function of many NB-LRR type R proteins. Our findings implicate the existence of a conserved mechanism to reach minimal NB-LRR R protein thresholds that are needed to trigger effective resistance responses.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>15548741</pmid><doi>10.1105/tpc.104.026682</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2004-12, Vol.16 (12), p.3480-3495
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_535887
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Airborne microorganisms
Arabidopsis Proteins - metabolism
Barley
Blumeria graminis
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Cycle Proteins - metabolism
Cell Membrane - metabolism
cell membranes
Chimeras
Disease resistance
Down-Regulation - genetics
Epitopes
Erysiphe graminis f. sp. hordei
Fungi - physiology
Gels
gene expression
Homeostasis - physiology
Hordeum - genetics
Hordeum - metabolism
Hordeum - microbiology
Hordeum vulgare
Host-Parasite Interactions - physiology
Immunity, Innate - genetics
Immunity, Innate - physiology
leaves
MLA proteins
Plant cells
Plant Diseases - genetics
Plant Diseases - microbiology
plant pathogenic fungi
plant proteins
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Plants, Genetically Modified - microbiology
powdery mildew
Protein Isoforms - genetics
Protein Isoforms - metabolism
Protein Structure, Tertiary - physiology
Proteins
RNA Processing, Post-Transcriptional - physiology
Transgenes
Up-Regulation - genetics
Yeasts
title RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RAR1%20positively%20controls%20steady%20state%20levels%20of%20barley%20MLA%20resistance%20proteins%20and%20enables%20sufficient%20MLA6%20accumulation%20for%20effective%20resistance&rft.jtitle=The%20Plant%20cell&rft.au=Bieri,%20S&rft.date=2004-12-01&rft.volume=16&rft.issue=12&rft.spage=3480&rft.epage=3495&rft.pages=3480-3495&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.104.026682&rft_dat=%3Cjstor_pubme%3E3872364%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c590t-8423bad9e70bc516e1843c10db39052ecfedcf37a33461c47b53c5aebb24d6f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218738312&rft_id=info:pmid/15548741&rft_jstor_id=3872364&rfr_iscdi=true