Loading…
Fast sampling with Gaussian scale mixture priors in high-dimensional regression
We propose an efficient way to sample from a class of structured multivariate Gaussian distributions. The proposed algorithm only requires matrix multiplications and linear system solutions. Its computational complexity grows linearly with the dimension, unlike existing algorithms that rely on Chole...
Saved in:
Published in: | Biometrika 2016-12, Vol.103 (4), p.985-991 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose an efficient way to sample from a class of structured multivariate Gaussian distributions. The proposed algorithm only requires matrix multiplications and linear system solutions. Its computational complexity grows linearly with the dimension, unlike existing algorithms that rely on Cholesky factorizations with cubic complexity. The algorithm is broadly applicable in settings where Gaussian scale mixture priors are used on high-dimensional parameters. Its effectiveness is illustrated through a high-dimensional regression problem with a horseshoe prior on the regression coefficients. Other potential applications are outlined. |
---|---|
ISSN: | 0006-3444 1464-3510 |
DOI: | 10.1093/biomet/asw042 |