Loading…

Picoliter‐volume inkjet printing into planar microdevice reservoirs for low‐waste, high‐capacity drug loading

Oral delivery of therapeutics is the preferred route for systemic drug administration due to ease of access and improved patient compliance. However, many therapeutics suffer from low oral bioavailability due to low pH and enzymatic conditions, poor cellular permeability, and low residence time. Mic...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering & translational medicine 2017-03, Vol.2 (1), p.9-16
Main Authors: Fox, Cade B., Nemeth, Cameron L., Chevalier, Rachel W., Cantlon, Joshua, Bogdanoff, Derek B., Hsiao, Jeff C., Desai, Tejal A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3783-8813b67f1d9f63a07d5c08de5cd45fa40e20eec8dec533d31a39d35efda099313
cites cdi_FETCH-LOGICAL-c3783-8813b67f1d9f63a07d5c08de5cd45fa40e20eec8dec533d31a39d35efda099313
container_end_page 16
container_issue 1
container_start_page 9
container_title Bioengineering & translational medicine
container_volume 2
creator Fox, Cade B.
Nemeth, Cameron L.
Chevalier, Rachel W.
Cantlon, Joshua
Bogdanoff, Derek B.
Hsiao, Jeff C.
Desai, Tejal A.
description Oral delivery of therapeutics is the preferred route for systemic drug administration due to ease of access and improved patient compliance. However, many therapeutics suffer from low oral bioavailability due to low pH and enzymatic conditions, poor cellular permeability, and low residence time. Microfabrication techniques have been used to create planar, asymmetric microdevices for oral drug delivery to address these limitations. The geometry of these microdevices facilitates prolonged drug exposure with unidirectional release of drug toward gastrointestinal epithelium. While these devices have significantly enhanced drug permeability in vitro and in vivo, loading drug into the micron‐scale reservoirs of the devices in a low‐waste, high‐capacity manner remains challenging. Here, we use picoliter‐volume inkjet printing to load topotecan and insulin into planar microdevices efficiently. Following a simple surface functionalization step, drug solution can be spotted into the microdevice reservoir. We show that relatively high capacities of both topotecan and insulin can be loaded into microdevices in a rapid, automated process with little to no drug waste.
doi_str_mv 10.1002/btm2.10053
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5426811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289569969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3783-8813b67f1d9f63a07d5c08de5cd45fa40e20eec8dec533d31a39d35efda099313</originalsourceid><addsrcrecordid>eNp9kctuEzEUhi1ERau2Gx4AWWKDECm-jD32BgkqLpWKYFHWlmOfSRxmxsH2JMqOR-AZeRIcUqrCgpWP7U-fzjk_Qo8puaCEsJfzMrB9JfgDdMK4IjPZSvrwXn2MznNeEUKopJyr5hE6ZkoQLiU7QflzcLEPBdLP7z82sZ8GwGH8uoKC1ymMJYyLei8Rr3s72oSH4FL0sAkOcIIMaRNDyriLCfdxWx1bmwu8wMuwWNabs2vrQtlhn6ZFJayvwjN01Nk-w_nteYq-vHt7c_lhdv3p_dXl6-uZ463iM6Uon8u2o153klvSeuGI8iCcb0RnGwKMALj64gTnnlPLtecCOm-J1pzyU_Tq4F1P8wG8g7Ek25s612DTzkQbzN8_Y1iaRdwY0TCp6F7w7FaQ4rcJcjFDyA76ugqIUzZUaU1p0zZNRZ_-g67ilMY6nmFMaSG1lrpSzw9UXWLOCbq7Zigx-zjNPk7zO84KP7nf_h36J7wK0AOwDT3s_qMyb24-soP0F3s-r-Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289569969</pqid></control><display><type>article</type><title>Picoliter‐volume inkjet printing into planar microdevice reservoirs for low‐waste, high‐capacity drug loading</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Fox, Cade B. ; Nemeth, Cameron L. ; Chevalier, Rachel W. ; Cantlon, Joshua ; Bogdanoff, Derek B. ; Hsiao, Jeff C. ; Desai, Tejal A.</creator><creatorcontrib>Fox, Cade B. ; Nemeth, Cameron L. ; Chevalier, Rachel W. ; Cantlon, Joshua ; Bogdanoff, Derek B. ; Hsiao, Jeff C. ; Desai, Tejal A.</creatorcontrib><description>Oral delivery of therapeutics is the preferred route for systemic drug administration due to ease of access and improved patient compliance. However, many therapeutics suffer from low oral bioavailability due to low pH and enzymatic conditions, poor cellular permeability, and low residence time. Microfabrication techniques have been used to create planar, asymmetric microdevices for oral drug delivery to address these limitations. The geometry of these microdevices facilitates prolonged drug exposure with unidirectional release of drug toward gastrointestinal epithelium. While these devices have significantly enhanced drug permeability in vitro and in vivo, loading drug into the micron‐scale reservoirs of the devices in a low‐waste, high‐capacity manner remains challenging. Here, we use picoliter‐volume inkjet printing to load topotecan and insulin into planar microdevices efficiently. Following a simple surface functionalization step, drug solution can be spotted into the microdevice reservoir. We show that relatively high capacities of both topotecan and insulin can be loaded into microdevices in a rapid, automated process with little to no drug waste.</description><identifier>ISSN: 2380-6761</identifier><identifier>EISSN: 2380-6761</identifier><identifier>DOI: 10.1002/btm2.10053</identifier><identifier>PMID: 28503662</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Advantages ; Bioavailability ; Biological products ; drug delivery ; Drug delivery systems ; Drug dosages ; Epithelium ; Hydrogels ; Inkjet printing ; Insulin ; Medical wastes ; Methods ; microdevices ; nanobiotechnology ; Nanotechnology ; Permeability ; Rapid Communication ; Reservoirs ; Silicon wafers ; topotecan</subject><ispartof>Bioengineering &amp; translational medicine, 2017-03, Vol.2 (1), p.9-16</ispartof><rights>2017 The Authors. Bioengineering &amp; Translational Medicine is published by Wiley Periodicals, Inc. on behalf of The American Institute of Chemical Engineers</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3783-8813b67f1d9f63a07d5c08de5cd45fa40e20eec8dec533d31a39d35efda099313</citedby><cites>FETCH-LOGICAL-c3783-8813b67f1d9f63a07d5c08de5cd45fa40e20eec8dec533d31a39d35efda099313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2289569969/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2289569969?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11561,25752,27923,27924,37011,37012,44589,46051,46475,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28503662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fox, Cade B.</creatorcontrib><creatorcontrib>Nemeth, Cameron L.</creatorcontrib><creatorcontrib>Chevalier, Rachel W.</creatorcontrib><creatorcontrib>Cantlon, Joshua</creatorcontrib><creatorcontrib>Bogdanoff, Derek B.</creatorcontrib><creatorcontrib>Hsiao, Jeff C.</creatorcontrib><creatorcontrib>Desai, Tejal A.</creatorcontrib><title>Picoliter‐volume inkjet printing into planar microdevice reservoirs for low‐waste, high‐capacity drug loading</title><title>Bioengineering &amp; translational medicine</title><addtitle>Bioeng Transl Med</addtitle><description>Oral delivery of therapeutics is the preferred route for systemic drug administration due to ease of access and improved patient compliance. However, many therapeutics suffer from low oral bioavailability due to low pH and enzymatic conditions, poor cellular permeability, and low residence time. Microfabrication techniques have been used to create planar, asymmetric microdevices for oral drug delivery to address these limitations. The geometry of these microdevices facilitates prolonged drug exposure with unidirectional release of drug toward gastrointestinal epithelium. While these devices have significantly enhanced drug permeability in vitro and in vivo, loading drug into the micron‐scale reservoirs of the devices in a low‐waste, high‐capacity manner remains challenging. Here, we use picoliter‐volume inkjet printing to load topotecan and insulin into planar microdevices efficiently. Following a simple surface functionalization step, drug solution can be spotted into the microdevice reservoir. We show that relatively high capacities of both topotecan and insulin can be loaded into microdevices in a rapid, automated process with little to no drug waste.</description><subject>Advantages</subject><subject>Bioavailability</subject><subject>Biological products</subject><subject>drug delivery</subject><subject>Drug delivery systems</subject><subject>Drug dosages</subject><subject>Epithelium</subject><subject>Hydrogels</subject><subject>Inkjet printing</subject><subject>Insulin</subject><subject>Medical wastes</subject><subject>Methods</subject><subject>microdevices</subject><subject>nanobiotechnology</subject><subject>Nanotechnology</subject><subject>Permeability</subject><subject>Rapid Communication</subject><subject>Reservoirs</subject><subject>Silicon wafers</subject><subject>topotecan</subject><issn>2380-6761</issn><issn>2380-6761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kctuEzEUhi1ERau2Gx4AWWKDECm-jD32BgkqLpWKYFHWlmOfSRxmxsH2JMqOR-AZeRIcUqrCgpWP7U-fzjk_Qo8puaCEsJfzMrB9JfgDdMK4IjPZSvrwXn2MznNeEUKopJyr5hE6ZkoQLiU7QflzcLEPBdLP7z82sZ8GwGH8uoKC1ymMJYyLei8Rr3s72oSH4FL0sAkOcIIMaRNDyriLCfdxWx1bmwu8wMuwWNabs2vrQtlhn6ZFJayvwjN01Nk-w_nteYq-vHt7c_lhdv3p_dXl6-uZ463iM6Uon8u2o153klvSeuGI8iCcb0RnGwKMALj64gTnnlPLtecCOm-J1pzyU_Tq4F1P8wG8g7Ek25s612DTzkQbzN8_Y1iaRdwY0TCp6F7w7FaQ4rcJcjFDyA76ugqIUzZUaU1p0zZNRZ_-g67ilMY6nmFMaSG1lrpSzw9UXWLOCbq7Zigx-zjNPk7zO84KP7nf_h36J7wK0AOwDT3s_qMyb24-soP0F3s-r-Y</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Fox, Cade B.</creator><creator>Nemeth, Cameron L.</creator><creator>Chevalier, Rachel W.</creator><creator>Cantlon, Joshua</creator><creator>Bogdanoff, Derek B.</creator><creator>Hsiao, Jeff C.</creator><creator>Desai, Tejal A.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201703</creationdate><title>Picoliter‐volume inkjet printing into planar microdevice reservoirs for low‐waste, high‐capacity drug loading</title><author>Fox, Cade B. ; Nemeth, Cameron L. ; Chevalier, Rachel W. ; Cantlon, Joshua ; Bogdanoff, Derek B. ; Hsiao, Jeff C. ; Desai, Tejal A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3783-8813b67f1d9f63a07d5c08de5cd45fa40e20eec8dec533d31a39d35efda099313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Advantages</topic><topic>Bioavailability</topic><topic>Biological products</topic><topic>drug delivery</topic><topic>Drug delivery systems</topic><topic>Drug dosages</topic><topic>Epithelium</topic><topic>Hydrogels</topic><topic>Inkjet printing</topic><topic>Insulin</topic><topic>Medical wastes</topic><topic>Methods</topic><topic>microdevices</topic><topic>nanobiotechnology</topic><topic>Nanotechnology</topic><topic>Permeability</topic><topic>Rapid Communication</topic><topic>Reservoirs</topic><topic>Silicon wafers</topic><topic>topotecan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Cade B.</creatorcontrib><creatorcontrib>Nemeth, Cameron L.</creatorcontrib><creatorcontrib>Chevalier, Rachel W.</creatorcontrib><creatorcontrib>Cantlon, Joshua</creatorcontrib><creatorcontrib>Bogdanoff, Derek B.</creatorcontrib><creatorcontrib>Hsiao, Jeff C.</creatorcontrib><creatorcontrib>Desai, Tejal A.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioengineering &amp; translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Cade B.</au><au>Nemeth, Cameron L.</au><au>Chevalier, Rachel W.</au><au>Cantlon, Joshua</au><au>Bogdanoff, Derek B.</au><au>Hsiao, Jeff C.</au><au>Desai, Tejal A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Picoliter‐volume inkjet printing into planar microdevice reservoirs for low‐waste, high‐capacity drug loading</atitle><jtitle>Bioengineering &amp; translational medicine</jtitle><addtitle>Bioeng Transl Med</addtitle><date>2017-03</date><risdate>2017</risdate><volume>2</volume><issue>1</issue><spage>9</spage><epage>16</epage><pages>9-16</pages><issn>2380-6761</issn><eissn>2380-6761</eissn><abstract>Oral delivery of therapeutics is the preferred route for systemic drug administration due to ease of access and improved patient compliance. However, many therapeutics suffer from low oral bioavailability due to low pH and enzymatic conditions, poor cellular permeability, and low residence time. Microfabrication techniques have been used to create planar, asymmetric microdevices for oral drug delivery to address these limitations. The geometry of these microdevices facilitates prolonged drug exposure with unidirectional release of drug toward gastrointestinal epithelium. While these devices have significantly enhanced drug permeability in vitro and in vivo, loading drug into the micron‐scale reservoirs of the devices in a low‐waste, high‐capacity manner remains challenging. Here, we use picoliter‐volume inkjet printing to load topotecan and insulin into planar microdevices efficiently. Following a simple surface functionalization step, drug solution can be spotted into the microdevice reservoir. We show that relatively high capacities of both topotecan and insulin can be loaded into microdevices in a rapid, automated process with little to no drug waste.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>28503662</pmid><doi>10.1002/btm2.10053</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2380-6761
ispartof Bioengineering & translational medicine, 2017-03, Vol.2 (1), p.9-16
issn 2380-6761
2380-6761
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5426811
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database; PubMed Central
subjects Advantages
Bioavailability
Biological products
drug delivery
Drug delivery systems
Drug dosages
Epithelium
Hydrogels
Inkjet printing
Insulin
Medical wastes
Methods
microdevices
nanobiotechnology
Nanotechnology
Permeability
Rapid Communication
Reservoirs
Silicon wafers
topotecan
title Picoliter‐volume inkjet printing into planar microdevice reservoirs for low‐waste, high‐capacity drug loading
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Picoliter%E2%80%90volume%20inkjet%20printing%20into%20planar%20microdevice%20reservoirs%20for%20low%E2%80%90waste,%20high%E2%80%90capacity%20drug%20loading&rft.jtitle=Bioengineering%20&%20translational%20medicine&rft.au=Fox,%20Cade%20B.&rft.date=2017-03&rft.volume=2&rft.issue=1&rft.spage=9&rft.epage=16&rft.pages=9-16&rft.issn=2380-6761&rft.eissn=2380-6761&rft_id=info:doi/10.1002/btm2.10053&rft_dat=%3Cproquest_pubme%3E2289569969%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3783-8813b67f1d9f63a07d5c08de5cd45fa40e20eec8dec533d31a39d35efda099313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2289569969&rft_id=info:pmid/28503662&rfr_iscdi=true