Loading…
Skin‐Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration
Corneal blindness is the fourth leading cause of blindness in the world. Current treatment is allogenic corneal transplantation, which is limited by shortage of donors and immunological rejection. Skin‐derived precursors (SKPs) are postnatal stem cells, which are self‐renewing, multipotent precursor...
Saved in:
Published in: | Stem cells translational medicine 2017-03, Vol.6 (3), p.788-798 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3 |
container_end_page | 798 |
container_issue | 3 |
container_start_page | 788 |
container_title | Stem cells translational medicine |
container_volume | 6 |
creator | Inagaki, Emi Hatou, Shin Higa, Kazunari Yoshida, Satoru Shibata, Shinsuke Okano, Hideyuki Tsubota, Kazuo Shimmura, Shigeto |
description | Corneal blindness is the fourth leading cause of blindness in the world. Current treatment is allogenic corneal transplantation, which is limited by shortage of donors and immunological rejection. Skin‐derived precursors (SKPs) are postnatal stem cells, which are self‐renewing, multipotent precursors that can be isolated and expanded from the dermis. Facial skin may therefore be an accessible autologous source of neural crest derived cells. SKPs were isolated from facial skin of Wnt1‐Cre/Floxed EGFP mouse. After inducing differentiation with medium containing retinoic acid and GSK 3‐β inhibitor, SKPs formed polygonal corneal endothelial‐like cells (sTECE). Expression of major corneal endothelial markers were confirmed by Reverse transcription polymerase chain reaction (RT‐PCR) and quantitative Real time polymerase chain reaction (qRT‐PCR). Western blots confirmed the expression of Na, K‐ATPase protein, the major functional marker of corneal endothelial cells. Immunohistochemistry revealed the expression of zonular occludens‐1 and Na, K‐ATPase in cell‐cell junctions. In vitro functional analysis of Na, K‐ATPase pump activity revealed that sTECE had significantly high pump function compared to SKPs or control 3T3 cells. Moreover, sTECE transplanted into a rabbit model of bullous keratopathy successfully maintained corneal thickness and transparency. Furthermore, we successfully induced corneal endothelial‐like cells from human SKPs, and showed that transplanted corneas also maintained corneal transparency and thickness. Our findings suggest that SKPs may be used as a source of autologous cells for the treatment of corneal endothelial disease. Stem Cells Translational Medicine 2017;6:788–798 |
doi_str_mv | 10.1002/sctm.16-0162 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5442762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290230149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3</originalsourceid><addsrcrecordid>eNp9kc9qFTEUxoMottTuXMuAGxdOTU4mmcxGkGv9AwXFWxeuQiZz0qbOTdpkptJdH6HP6JOY4daLujAcyIHvx8c55yPkKaNHjFJ4le20OWKypkzCA7IPTLS1FIo-3PWy2SOHOV_Q8mQnO6CPyR4opqRUbJ98W3_34eft3VtM_hqH6nNCO6ccU65MqWod52Sxiq4o8QyDnxbJxVStYgpoxuo4DHE6x9GX_gsWBJOZfAxPyCNnxoyH9_8B-fru-HT1oT759P7j6s1JbQUA1AOXjRUClePcdU1nKBiBvHe2la5zykrngCtjRA8SGbOy7xUIKTvVY-sGfkBeb30v536Dg8UwJTPqy-Q3Jt3oaLz-Wwn-XJ_Fay2aBloJxeDFvUGKVzPmSW98tjiOJmCcsy6nakXTAusK-vwf9KLcJ5T1NEBHgVPWLNTLLWVTzDmh2w3DqF5i00tsmkm9xFbwZ38usIN_h1QAvgV--BFv_mum16tTzoAy4L8AvTClig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290230149</pqid></control><display><type>article</type><title>Skin‐Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration</title><source>PubMed Central Free</source><source>Wiley Online Library Open Access</source><source>ProQuest - Publicly Available Content Database</source><source>Oxford Academic Journals (Open Access)</source><creator>Inagaki, Emi ; Hatou, Shin ; Higa, Kazunari ; Yoshida, Satoru ; Shibata, Shinsuke ; Okano, Hideyuki ; Tsubota, Kazuo ; Shimmura, Shigeto</creator><creatorcontrib>Inagaki, Emi ; Hatou, Shin ; Higa, Kazunari ; Yoshida, Satoru ; Shibata, Shinsuke ; Okano, Hideyuki ; Tsubota, Kazuo ; Shimmura, Shigeto</creatorcontrib><description>Corneal blindness is the fourth leading cause of blindness in the world. Current treatment is allogenic corneal transplantation, which is limited by shortage of donors and immunological rejection. Skin‐derived precursors (SKPs) are postnatal stem cells, which are self‐renewing, multipotent precursors that can be isolated and expanded from the dermis. Facial skin may therefore be an accessible autologous source of neural crest derived cells. SKPs were isolated from facial skin of Wnt1‐Cre/Floxed EGFP mouse. After inducing differentiation with medium containing retinoic acid and GSK 3‐β inhibitor, SKPs formed polygonal corneal endothelial‐like cells (sTECE). Expression of major corneal endothelial markers were confirmed by Reverse transcription polymerase chain reaction (RT‐PCR) and quantitative Real time polymerase chain reaction (qRT‐PCR). Western blots confirmed the expression of Na, K‐ATPase protein, the major functional marker of corneal endothelial cells. Immunohistochemistry revealed the expression of zonular occludens‐1 and Na, K‐ATPase in cell‐cell junctions. In vitro functional analysis of Na, K‐ATPase pump activity revealed that sTECE had significantly high pump function compared to SKPs or control 3T3 cells. Moreover, sTECE transplanted into a rabbit model of bullous keratopathy successfully maintained corneal thickness and transparency. Furthermore, we successfully induced corneal endothelial‐like cells from human SKPs, and showed that transplanted corneas also maintained corneal transparency and thickness. Our findings suggest that SKPs may be used as a source of autologous cells for the treatment of corneal endothelial disease. Stem Cells Translational Medicine 2017;6:788–798</description><identifier>ISSN: 2157-6564</identifier><identifier>EISSN: 2157-6580</identifier><identifier>DOI: 10.1002/sctm.16-0162</identifier><identifier>PMID: 28186681</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; Autografts ; Blindness ; Bone surgery ; Cell culture ; Cell Differentiation ; Cell junctions ; Cornea ; Corneal endothelium ; Corneal Transplantation ; Dermis ; Disease Models, Animal ; Edema ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Endothelium ; Endothelium, Corneal - cytology ; Eye diseases ; Graft rejection ; Green Fluorescent Proteins - metabolism ; Humans ; Immunohistochemistry ; Integrases - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Na+/K+-exchanging ATPase ; Neural crest ; Neural stem cells ; NIH 3T3 Cells ; Polymerase chain reaction ; Rabbits ; Regeneration ; Retinoic acid ; Reverse transcription ; Skin ; Skin - cytology ; Skin progenitors ; Sodium-Potassium-Exchanging ATPase - metabolism ; Spheroids, Cellular - cytology ; Stem cell transplantation ; Stem cells ; Stem Cells - cytology ; Tissue‐Specific Progenitor and Stem Cells ; Transgenic animals ; Translational s and Reviews ; Western blotting</subject><ispartof>Stem cells translational medicine, 2017-03, Vol.6 (3), p.788-798</ispartof><rights>2017 The Authors published by Wiley Periodicals, Inc. on behalf of AlphaMed Press</rights><rights>2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3</citedby><cites>FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2290230149/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2290230149?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28186681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inagaki, Emi</creatorcontrib><creatorcontrib>Hatou, Shin</creatorcontrib><creatorcontrib>Higa, Kazunari</creatorcontrib><creatorcontrib>Yoshida, Satoru</creatorcontrib><creatorcontrib>Shibata, Shinsuke</creatorcontrib><creatorcontrib>Okano, Hideyuki</creatorcontrib><creatorcontrib>Tsubota, Kazuo</creatorcontrib><creatorcontrib>Shimmura, Shigeto</creatorcontrib><title>Skin‐Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration</title><title>Stem cells translational medicine</title><addtitle>Stem Cells Transl Med</addtitle><description>Corneal blindness is the fourth leading cause of blindness in the world. Current treatment is allogenic corneal transplantation, which is limited by shortage of donors and immunological rejection. Skin‐derived precursors (SKPs) are postnatal stem cells, which are self‐renewing, multipotent precursors that can be isolated and expanded from the dermis. Facial skin may therefore be an accessible autologous source of neural crest derived cells. SKPs were isolated from facial skin of Wnt1‐Cre/Floxed EGFP mouse. After inducing differentiation with medium containing retinoic acid and GSK 3‐β inhibitor, SKPs formed polygonal corneal endothelial‐like cells (sTECE). Expression of major corneal endothelial markers were confirmed by Reverse transcription polymerase chain reaction (RT‐PCR) and quantitative Real time polymerase chain reaction (qRT‐PCR). Western blots confirmed the expression of Na, K‐ATPase protein, the major functional marker of corneal endothelial cells. Immunohistochemistry revealed the expression of zonular occludens‐1 and Na, K‐ATPase in cell‐cell junctions. In vitro functional analysis of Na, K‐ATPase pump activity revealed that sTECE had significantly high pump function compared to SKPs or control 3T3 cells. Moreover, sTECE transplanted into a rabbit model of bullous keratopathy successfully maintained corneal thickness and transparency. Furthermore, we successfully induced corneal endothelial‐like cells from human SKPs, and showed that transplanted corneas also maintained corneal transparency and thickness. Our findings suggest that SKPs may be used as a source of autologous cells for the treatment of corneal endothelial disease. Stem Cells Translational Medicine 2017;6:788–798</description><subject>Animals</subject><subject>Autografts</subject><subject>Blindness</subject><subject>Bone surgery</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell junctions</subject><subject>Cornea</subject><subject>Corneal endothelium</subject><subject>Corneal Transplantation</subject><subject>Dermis</subject><subject>Disease Models, Animal</subject><subject>Edema</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelium</subject><subject>Endothelium, Corneal - cytology</subject><subject>Eye diseases</subject><subject>Graft rejection</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Integrases - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Na+/K+-exchanging ATPase</subject><subject>Neural crest</subject><subject>Neural stem cells</subject><subject>NIH 3T3 Cells</subject><subject>Polymerase chain reaction</subject><subject>Rabbits</subject><subject>Regeneration</subject><subject>Retinoic acid</subject><subject>Reverse transcription</subject><subject>Skin</subject><subject>Skin - cytology</subject><subject>Skin progenitors</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Spheroids, Cellular - cytology</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Tissue‐Specific Progenitor and Stem Cells</subject><subject>Transgenic animals</subject><subject>Translational s and Reviews</subject><subject>Western blotting</subject><issn>2157-6564</issn><issn>2157-6580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kc9qFTEUxoMottTuXMuAGxdOTU4mmcxGkGv9AwXFWxeuQiZz0qbOTdpkptJdH6HP6JOY4daLujAcyIHvx8c55yPkKaNHjFJ4le20OWKypkzCA7IPTLS1FIo-3PWy2SOHOV_Q8mQnO6CPyR4opqRUbJ98W3_34eft3VtM_hqH6nNCO6ccU65MqWod52Sxiq4o8QyDnxbJxVStYgpoxuo4DHE6x9GX_gsWBJOZfAxPyCNnxoyH9_8B-fru-HT1oT759P7j6s1JbQUA1AOXjRUClePcdU1nKBiBvHe2la5zykrngCtjRA8SGbOy7xUIKTvVY-sGfkBeb30v536Dg8UwJTPqy-Q3Jt3oaLz-Wwn-XJ_Fay2aBloJxeDFvUGKVzPmSW98tjiOJmCcsy6nakXTAusK-vwf9KLcJ5T1NEBHgVPWLNTLLWVTzDmh2w3DqF5i00tsmkm9xFbwZ38usIN_h1QAvgV--BFv_mum16tTzoAy4L8AvTClig</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Inagaki, Emi</creator><creator>Hatou, Shin</creator><creator>Higa, Kazunari</creator><creator>Yoshida, Satoru</creator><creator>Shibata, Shinsuke</creator><creator>Okano, Hideyuki</creator><creator>Tsubota, Kazuo</creator><creator>Shimmura, Shigeto</creator><general>Oxford University Press</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201703</creationdate><title>Skin‐Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration</title><author>Inagaki, Emi ; Hatou, Shin ; Higa, Kazunari ; Yoshida, Satoru ; Shibata, Shinsuke ; Okano, Hideyuki ; Tsubota, Kazuo ; Shimmura, Shigeto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Autografts</topic><topic>Blindness</topic><topic>Bone surgery</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell junctions</topic><topic>Cornea</topic><topic>Corneal endothelium</topic><topic>Corneal Transplantation</topic><topic>Dermis</topic><topic>Disease Models, Animal</topic><topic>Edema</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelium</topic><topic>Endothelium, Corneal - cytology</topic><topic>Eye diseases</topic><topic>Graft rejection</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Integrases - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Na+/K+-exchanging ATPase</topic><topic>Neural crest</topic><topic>Neural stem cells</topic><topic>NIH 3T3 Cells</topic><topic>Polymerase chain reaction</topic><topic>Rabbits</topic><topic>Regeneration</topic><topic>Retinoic acid</topic><topic>Reverse transcription</topic><topic>Skin</topic><topic>Skin - cytology</topic><topic>Skin progenitors</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Spheroids, Cellular - cytology</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Tissue‐Specific Progenitor and Stem Cells</topic><topic>Transgenic animals</topic><topic>Translational s and Reviews</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inagaki, Emi</creatorcontrib><creatorcontrib>Hatou, Shin</creatorcontrib><creatorcontrib>Higa, Kazunari</creatorcontrib><creatorcontrib>Yoshida, Satoru</creatorcontrib><creatorcontrib>Shibata, Shinsuke</creatorcontrib><creatorcontrib>Okano, Hideyuki</creatorcontrib><creatorcontrib>Tsubota, Kazuo</creatorcontrib><creatorcontrib>Shimmura, Shigeto</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cells translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inagaki, Emi</au><au>Hatou, Shin</au><au>Higa, Kazunari</au><au>Yoshida, Satoru</au><au>Shibata, Shinsuke</au><au>Okano, Hideyuki</au><au>Tsubota, Kazuo</au><au>Shimmura, Shigeto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skin‐Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration</atitle><jtitle>Stem cells translational medicine</jtitle><addtitle>Stem Cells Transl Med</addtitle><date>2017-03</date><risdate>2017</risdate><volume>6</volume><issue>3</issue><spage>788</spage><epage>798</epage><pages>788-798</pages><issn>2157-6564</issn><eissn>2157-6580</eissn><abstract>Corneal blindness is the fourth leading cause of blindness in the world. Current treatment is allogenic corneal transplantation, which is limited by shortage of donors and immunological rejection. Skin‐derived precursors (SKPs) are postnatal stem cells, which are self‐renewing, multipotent precursors that can be isolated and expanded from the dermis. Facial skin may therefore be an accessible autologous source of neural crest derived cells. SKPs were isolated from facial skin of Wnt1‐Cre/Floxed EGFP mouse. After inducing differentiation with medium containing retinoic acid and GSK 3‐β inhibitor, SKPs formed polygonal corneal endothelial‐like cells (sTECE). Expression of major corneal endothelial markers were confirmed by Reverse transcription polymerase chain reaction (RT‐PCR) and quantitative Real time polymerase chain reaction (qRT‐PCR). Western blots confirmed the expression of Na, K‐ATPase protein, the major functional marker of corneal endothelial cells. Immunohistochemistry revealed the expression of zonular occludens‐1 and Na, K‐ATPase in cell‐cell junctions. In vitro functional analysis of Na, K‐ATPase pump activity revealed that sTECE had significantly high pump function compared to SKPs or control 3T3 cells. Moreover, sTECE transplanted into a rabbit model of bullous keratopathy successfully maintained corneal thickness and transparency. Furthermore, we successfully induced corneal endothelial‐like cells from human SKPs, and showed that transplanted corneas also maintained corneal transparency and thickness. Our findings suggest that SKPs may be used as a source of autologous cells for the treatment of corneal endothelial disease. Stem Cells Translational Medicine 2017;6:788–798</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>28186681</pmid><doi>10.1002/sctm.16-0162</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2157-6564 |
ispartof | Stem cells translational medicine, 2017-03, Vol.6 (3), p.788-798 |
issn | 2157-6564 2157-6580 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5442762 |
source | PubMed Central Free; Wiley Online Library Open Access; ProQuest - Publicly Available Content Database; Oxford Academic Journals (Open Access) |
subjects | Animals Autografts Blindness Bone surgery Cell culture Cell Differentiation Cell junctions Cornea Corneal endothelium Corneal Transplantation Dermis Disease Models, Animal Edema Endothelial cells Endothelial Cells - cytology Endothelial Cells - metabolism Endothelium Endothelium, Corneal - cytology Eye diseases Graft rejection Green Fluorescent Proteins - metabolism Humans Immunohistochemistry Integrases - metabolism Mice Mice, Inbred C57BL Mice, Transgenic Na+/K+-exchanging ATPase Neural crest Neural stem cells NIH 3T3 Cells Polymerase chain reaction Rabbits Regeneration Retinoic acid Reverse transcription Skin Skin - cytology Skin progenitors Sodium-Potassium-Exchanging ATPase - metabolism Spheroids, Cellular - cytology Stem cell transplantation Stem cells Stem Cells - cytology Tissue‐Specific Progenitor and Stem Cells Transgenic animals Translational s and Reviews Western blotting |
title | Skin‐Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skin%E2%80%90Derived%20Precursors%20as%20a%20Source%20of%20Progenitors%20for%20Corneal%20Endothelial%20Regeneration&rft.jtitle=Stem%20cells%20translational%20medicine&rft.au=Inagaki,%20Emi&rft.date=2017-03&rft.volume=6&rft.issue=3&rft.spage=788&rft.epage=798&rft.pages=788-798&rft.issn=2157-6564&rft.eissn=2157-6580&rft_id=info:doi/10.1002/sctm.16-0162&rft_dat=%3Cproquest_pubme%3E2290230149%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290230149&rft_id=info:pmid/28186681&rfr_iscdi=true |