Loading…

Skin‐Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration

Corneal blindness is the fourth leading cause of blindness in the world. Current treatment is allogenic corneal transplantation, which is limited by shortage of donors and immunological rejection. Skin‐derived precursors (SKPs) are postnatal stem cells, which are self‐renewing, multipotent precursor...

Full description

Saved in:
Bibliographic Details
Published in:Stem cells translational medicine 2017-03, Vol.6 (3), p.788-798
Main Authors: Inagaki, Emi, Hatou, Shin, Higa, Kazunari, Yoshida, Satoru, Shibata, Shinsuke, Okano, Hideyuki, Tsubota, Kazuo, Shimmura, Shigeto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3
cites cdi_FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3
container_end_page 798
container_issue 3
container_start_page 788
container_title Stem cells translational medicine
container_volume 6
creator Inagaki, Emi
Hatou, Shin
Higa, Kazunari
Yoshida, Satoru
Shibata, Shinsuke
Okano, Hideyuki
Tsubota, Kazuo
Shimmura, Shigeto
description Corneal blindness is the fourth leading cause of blindness in the world. Current treatment is allogenic corneal transplantation, which is limited by shortage of donors and immunological rejection. Skin‐derived precursors (SKPs) are postnatal stem cells, which are self‐renewing, multipotent precursors that can be isolated and expanded from the dermis. Facial skin may therefore be an accessible autologous source of neural crest derived cells. SKPs were isolated from facial skin of Wnt1‐Cre/Floxed EGFP mouse. After inducing differentiation with medium containing retinoic acid and GSK 3‐β inhibitor, SKPs formed polygonal corneal endothelial‐like cells (sTECE). Expression of major corneal endothelial markers were confirmed by Reverse transcription polymerase chain reaction (RT‐PCR) and quantitative Real time polymerase chain reaction (qRT‐PCR). Western blots confirmed the expression of Na, K‐ATPase protein, the major functional marker of corneal endothelial cells. Immunohistochemistry revealed the expression of zonular occludens‐1 and Na, K‐ATPase in cell‐cell junctions. In vitro functional analysis of Na, K‐ATPase pump activity revealed that sTECE had significantly high pump function compared to SKPs or control 3T3 cells. Moreover, sTECE transplanted into a rabbit model of bullous keratopathy successfully maintained corneal thickness and transparency. Furthermore, we successfully induced corneal endothelial‐like cells from human SKPs, and showed that transplanted corneas also maintained corneal transparency and thickness. Our findings suggest that SKPs may be used as a source of autologous cells for the treatment of corneal endothelial disease. Stem Cells Translational Medicine 2017;6:788–798
doi_str_mv 10.1002/sctm.16-0162
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5442762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290230149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3</originalsourceid><addsrcrecordid>eNp9kc9qFTEUxoMottTuXMuAGxdOTU4mmcxGkGv9AwXFWxeuQiZz0qbOTdpkptJdH6HP6JOY4daLujAcyIHvx8c55yPkKaNHjFJ4le20OWKypkzCA7IPTLS1FIo-3PWy2SOHOV_Q8mQnO6CPyR4opqRUbJ98W3_34eft3VtM_hqH6nNCO6ccU65MqWod52Sxiq4o8QyDnxbJxVStYgpoxuo4DHE6x9GX_gsWBJOZfAxPyCNnxoyH9_8B-fru-HT1oT759P7j6s1JbQUA1AOXjRUClePcdU1nKBiBvHe2la5zykrngCtjRA8SGbOy7xUIKTvVY-sGfkBeb30v536Dg8UwJTPqy-Q3Jt3oaLz-Wwn-XJ_Fay2aBloJxeDFvUGKVzPmSW98tjiOJmCcsy6nakXTAusK-vwf9KLcJ5T1NEBHgVPWLNTLLWVTzDmh2w3DqF5i00tsmkm9xFbwZ38usIN_h1QAvgV--BFv_mum16tTzoAy4L8AvTClig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290230149</pqid></control><display><type>article</type><title>Skin‐Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration</title><source>PubMed Central Free</source><source>Wiley Online Library Open Access</source><source>ProQuest - Publicly Available Content Database</source><source>Oxford Academic Journals (Open Access)</source><creator>Inagaki, Emi ; Hatou, Shin ; Higa, Kazunari ; Yoshida, Satoru ; Shibata, Shinsuke ; Okano, Hideyuki ; Tsubota, Kazuo ; Shimmura, Shigeto</creator><creatorcontrib>Inagaki, Emi ; Hatou, Shin ; Higa, Kazunari ; Yoshida, Satoru ; Shibata, Shinsuke ; Okano, Hideyuki ; Tsubota, Kazuo ; Shimmura, Shigeto</creatorcontrib><description>Corneal blindness is the fourth leading cause of blindness in the world. Current treatment is allogenic corneal transplantation, which is limited by shortage of donors and immunological rejection. Skin‐derived precursors (SKPs) are postnatal stem cells, which are self‐renewing, multipotent precursors that can be isolated and expanded from the dermis. Facial skin may therefore be an accessible autologous source of neural crest derived cells. SKPs were isolated from facial skin of Wnt1‐Cre/Floxed EGFP mouse. After inducing differentiation with medium containing retinoic acid and GSK 3‐β inhibitor, SKPs formed polygonal corneal endothelial‐like cells (sTECE). Expression of major corneal endothelial markers were confirmed by Reverse transcription polymerase chain reaction (RT‐PCR) and quantitative Real time polymerase chain reaction (qRT‐PCR). Western blots confirmed the expression of Na, K‐ATPase protein, the major functional marker of corneal endothelial cells. Immunohistochemistry revealed the expression of zonular occludens‐1 and Na, K‐ATPase in cell‐cell junctions. In vitro functional analysis of Na, K‐ATPase pump activity revealed that sTECE had significantly high pump function compared to SKPs or control 3T3 cells. Moreover, sTECE transplanted into a rabbit model of bullous keratopathy successfully maintained corneal thickness and transparency. Furthermore, we successfully induced corneal endothelial‐like cells from human SKPs, and showed that transplanted corneas also maintained corneal transparency and thickness. Our findings suggest that SKPs may be used as a source of autologous cells for the treatment of corneal endothelial disease. Stem Cells Translational Medicine 2017;6:788–798</description><identifier>ISSN: 2157-6564</identifier><identifier>EISSN: 2157-6580</identifier><identifier>DOI: 10.1002/sctm.16-0162</identifier><identifier>PMID: 28186681</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; Autografts ; Blindness ; Bone surgery ; Cell culture ; Cell Differentiation ; Cell junctions ; Cornea ; Corneal endothelium ; Corneal Transplantation ; Dermis ; Disease Models, Animal ; Edema ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Endothelium ; Endothelium, Corneal - cytology ; Eye diseases ; Graft rejection ; Green Fluorescent Proteins - metabolism ; Humans ; Immunohistochemistry ; Integrases - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Na+/K+-exchanging ATPase ; Neural crest ; Neural stem cells ; NIH 3T3 Cells ; Polymerase chain reaction ; Rabbits ; Regeneration ; Retinoic acid ; Reverse transcription ; Skin ; Skin - cytology ; Skin progenitors ; Sodium-Potassium-Exchanging ATPase - metabolism ; Spheroids, Cellular - cytology ; Stem cell transplantation ; Stem cells ; Stem Cells - cytology ; Tissue‐Specific Progenitor and Stem Cells ; Transgenic animals ; Translational s and Reviews ; Western blotting</subject><ispartof>Stem cells translational medicine, 2017-03, Vol.6 (3), p.788-798</ispartof><rights>2017 The Authors published by Wiley Periodicals, Inc. on behalf of AlphaMed Press</rights><rights>2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3</citedby><cites>FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2290230149/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2290230149?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28186681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inagaki, Emi</creatorcontrib><creatorcontrib>Hatou, Shin</creatorcontrib><creatorcontrib>Higa, Kazunari</creatorcontrib><creatorcontrib>Yoshida, Satoru</creatorcontrib><creatorcontrib>Shibata, Shinsuke</creatorcontrib><creatorcontrib>Okano, Hideyuki</creatorcontrib><creatorcontrib>Tsubota, Kazuo</creatorcontrib><creatorcontrib>Shimmura, Shigeto</creatorcontrib><title>Skin‐Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration</title><title>Stem cells translational medicine</title><addtitle>Stem Cells Transl Med</addtitle><description>Corneal blindness is the fourth leading cause of blindness in the world. Current treatment is allogenic corneal transplantation, which is limited by shortage of donors and immunological rejection. Skin‐derived precursors (SKPs) are postnatal stem cells, which are self‐renewing, multipotent precursors that can be isolated and expanded from the dermis. Facial skin may therefore be an accessible autologous source of neural crest derived cells. SKPs were isolated from facial skin of Wnt1‐Cre/Floxed EGFP mouse. After inducing differentiation with medium containing retinoic acid and GSK 3‐β inhibitor, SKPs formed polygonal corneal endothelial‐like cells (sTECE). Expression of major corneal endothelial markers were confirmed by Reverse transcription polymerase chain reaction (RT‐PCR) and quantitative Real time polymerase chain reaction (qRT‐PCR). Western blots confirmed the expression of Na, K‐ATPase protein, the major functional marker of corneal endothelial cells. Immunohistochemistry revealed the expression of zonular occludens‐1 and Na, K‐ATPase in cell‐cell junctions. In vitro functional analysis of Na, K‐ATPase pump activity revealed that sTECE had significantly high pump function compared to SKPs or control 3T3 cells. Moreover, sTECE transplanted into a rabbit model of bullous keratopathy successfully maintained corneal thickness and transparency. Furthermore, we successfully induced corneal endothelial‐like cells from human SKPs, and showed that transplanted corneas also maintained corneal transparency and thickness. Our findings suggest that SKPs may be used as a source of autologous cells for the treatment of corneal endothelial disease. Stem Cells Translational Medicine 2017;6:788–798</description><subject>Animals</subject><subject>Autografts</subject><subject>Blindness</subject><subject>Bone surgery</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell junctions</subject><subject>Cornea</subject><subject>Corneal endothelium</subject><subject>Corneal Transplantation</subject><subject>Dermis</subject><subject>Disease Models, Animal</subject><subject>Edema</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelium</subject><subject>Endothelium, Corneal - cytology</subject><subject>Eye diseases</subject><subject>Graft rejection</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Integrases - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Na+/K+-exchanging ATPase</subject><subject>Neural crest</subject><subject>Neural stem cells</subject><subject>NIH 3T3 Cells</subject><subject>Polymerase chain reaction</subject><subject>Rabbits</subject><subject>Regeneration</subject><subject>Retinoic acid</subject><subject>Reverse transcription</subject><subject>Skin</subject><subject>Skin - cytology</subject><subject>Skin progenitors</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Spheroids, Cellular - cytology</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Tissue‐Specific Progenitor and Stem Cells</subject><subject>Transgenic animals</subject><subject>Translational s and Reviews</subject><subject>Western blotting</subject><issn>2157-6564</issn><issn>2157-6580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kc9qFTEUxoMottTuXMuAGxdOTU4mmcxGkGv9AwXFWxeuQiZz0qbOTdpkptJdH6HP6JOY4daLujAcyIHvx8c55yPkKaNHjFJ4le20OWKypkzCA7IPTLS1FIo-3PWy2SOHOV_Q8mQnO6CPyR4opqRUbJ98W3_34eft3VtM_hqH6nNCO6ccU65MqWod52Sxiq4o8QyDnxbJxVStYgpoxuo4DHE6x9GX_gsWBJOZfAxPyCNnxoyH9_8B-fru-HT1oT759P7j6s1JbQUA1AOXjRUClePcdU1nKBiBvHe2la5zykrngCtjRA8SGbOy7xUIKTvVY-sGfkBeb30v536Dg8UwJTPqy-Q3Jt3oaLz-Wwn-XJ_Fay2aBloJxeDFvUGKVzPmSW98tjiOJmCcsy6nakXTAusK-vwf9KLcJ5T1NEBHgVPWLNTLLWVTzDmh2w3DqF5i00tsmkm9xFbwZ38usIN_h1QAvgV--BFv_mum16tTzoAy4L8AvTClig</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Inagaki, Emi</creator><creator>Hatou, Shin</creator><creator>Higa, Kazunari</creator><creator>Yoshida, Satoru</creator><creator>Shibata, Shinsuke</creator><creator>Okano, Hideyuki</creator><creator>Tsubota, Kazuo</creator><creator>Shimmura, Shigeto</creator><general>Oxford University Press</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201703</creationdate><title>Skin‐Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration</title><author>Inagaki, Emi ; Hatou, Shin ; Higa, Kazunari ; Yoshida, Satoru ; Shibata, Shinsuke ; Okano, Hideyuki ; Tsubota, Kazuo ; Shimmura, Shigeto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Autografts</topic><topic>Blindness</topic><topic>Bone surgery</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell junctions</topic><topic>Cornea</topic><topic>Corneal endothelium</topic><topic>Corneal Transplantation</topic><topic>Dermis</topic><topic>Disease Models, Animal</topic><topic>Edema</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelium</topic><topic>Endothelium, Corneal - cytology</topic><topic>Eye diseases</topic><topic>Graft rejection</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Integrases - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Na+/K+-exchanging ATPase</topic><topic>Neural crest</topic><topic>Neural stem cells</topic><topic>NIH 3T3 Cells</topic><topic>Polymerase chain reaction</topic><topic>Rabbits</topic><topic>Regeneration</topic><topic>Retinoic acid</topic><topic>Reverse transcription</topic><topic>Skin</topic><topic>Skin - cytology</topic><topic>Skin progenitors</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Spheroids, Cellular - cytology</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Tissue‐Specific Progenitor and Stem Cells</topic><topic>Transgenic animals</topic><topic>Translational s and Reviews</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inagaki, Emi</creatorcontrib><creatorcontrib>Hatou, Shin</creatorcontrib><creatorcontrib>Higa, Kazunari</creatorcontrib><creatorcontrib>Yoshida, Satoru</creatorcontrib><creatorcontrib>Shibata, Shinsuke</creatorcontrib><creatorcontrib>Okano, Hideyuki</creatorcontrib><creatorcontrib>Tsubota, Kazuo</creatorcontrib><creatorcontrib>Shimmura, Shigeto</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cells translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inagaki, Emi</au><au>Hatou, Shin</au><au>Higa, Kazunari</au><au>Yoshida, Satoru</au><au>Shibata, Shinsuke</au><au>Okano, Hideyuki</au><au>Tsubota, Kazuo</au><au>Shimmura, Shigeto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skin‐Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration</atitle><jtitle>Stem cells translational medicine</jtitle><addtitle>Stem Cells Transl Med</addtitle><date>2017-03</date><risdate>2017</risdate><volume>6</volume><issue>3</issue><spage>788</spage><epage>798</epage><pages>788-798</pages><issn>2157-6564</issn><eissn>2157-6580</eissn><abstract>Corneal blindness is the fourth leading cause of blindness in the world. Current treatment is allogenic corneal transplantation, which is limited by shortage of donors and immunological rejection. Skin‐derived precursors (SKPs) are postnatal stem cells, which are self‐renewing, multipotent precursors that can be isolated and expanded from the dermis. Facial skin may therefore be an accessible autologous source of neural crest derived cells. SKPs were isolated from facial skin of Wnt1‐Cre/Floxed EGFP mouse. After inducing differentiation with medium containing retinoic acid and GSK 3‐β inhibitor, SKPs formed polygonal corneal endothelial‐like cells (sTECE). Expression of major corneal endothelial markers were confirmed by Reverse transcription polymerase chain reaction (RT‐PCR) and quantitative Real time polymerase chain reaction (qRT‐PCR). Western blots confirmed the expression of Na, K‐ATPase protein, the major functional marker of corneal endothelial cells. Immunohistochemistry revealed the expression of zonular occludens‐1 and Na, K‐ATPase in cell‐cell junctions. In vitro functional analysis of Na, K‐ATPase pump activity revealed that sTECE had significantly high pump function compared to SKPs or control 3T3 cells. Moreover, sTECE transplanted into a rabbit model of bullous keratopathy successfully maintained corneal thickness and transparency. Furthermore, we successfully induced corneal endothelial‐like cells from human SKPs, and showed that transplanted corneas also maintained corneal transparency and thickness. Our findings suggest that SKPs may be used as a source of autologous cells for the treatment of corneal endothelial disease. Stem Cells Translational Medicine 2017;6:788–798</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>28186681</pmid><doi>10.1002/sctm.16-0162</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2157-6564
ispartof Stem cells translational medicine, 2017-03, Vol.6 (3), p.788-798
issn 2157-6564
2157-6580
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5442762
source PubMed Central Free; Wiley Online Library Open Access; ProQuest - Publicly Available Content Database; Oxford Academic Journals (Open Access)
subjects Animals
Autografts
Blindness
Bone surgery
Cell culture
Cell Differentiation
Cell junctions
Cornea
Corneal endothelium
Corneal Transplantation
Dermis
Disease Models, Animal
Edema
Endothelial cells
Endothelial Cells - cytology
Endothelial Cells - metabolism
Endothelium
Endothelium, Corneal - cytology
Eye diseases
Graft rejection
Green Fluorescent Proteins - metabolism
Humans
Immunohistochemistry
Integrases - metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Na+/K+-exchanging ATPase
Neural crest
Neural stem cells
NIH 3T3 Cells
Polymerase chain reaction
Rabbits
Regeneration
Retinoic acid
Reverse transcription
Skin
Skin - cytology
Skin progenitors
Sodium-Potassium-Exchanging ATPase - metabolism
Spheroids, Cellular - cytology
Stem cell transplantation
Stem cells
Stem Cells - cytology
Tissue‐Specific Progenitor and Stem Cells
Transgenic animals
Translational s and Reviews
Western blotting
title Skin‐Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skin%E2%80%90Derived%20Precursors%20as%20a%20Source%20of%20Progenitors%20for%20Corneal%20Endothelial%20Regeneration&rft.jtitle=Stem%20cells%20translational%20medicine&rft.au=Inagaki,%20Emi&rft.date=2017-03&rft.volume=6&rft.issue=3&rft.spage=788&rft.epage=798&rft.pages=788-798&rft.issn=2157-6564&rft.eissn=2157-6580&rft_id=info:doi/10.1002/sctm.16-0162&rft_dat=%3Cproquest_pubme%3E2290230149%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5222-d364c55e8f33f949a02a5e3bfc76f9f8c6ff238aa5b26e11c6bb8256698be7fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290230149&rft_id=info:pmid/28186681&rfr_iscdi=true