Loading…

The enhancement of antibody concentration and achievement of high cell density CHO cell cultivation by adding nucleoside

Recently, with the dramatic increase in demand for therapeutic antibodies, Chinese hamster ovary (CHO) cell culture systems have made significant progress in recombinant antibody production. Over the past two decades, recombinant antibody productivity has been improved by more than 100-fold. Medium...

Full description

Saved in:
Bibliographic Details
Published in:Cytotechnology (Dordrecht) 2017-06, Vol.69 (3), p.511-521
Main Authors: Takagi, Yasuhiro, Kikuchi, Takuya, Wada, Ryuta, Omasa, Takeshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, with the dramatic increase in demand for therapeutic antibodies, Chinese hamster ovary (CHO) cell culture systems have made significant progress in recombinant antibody production. Over the past two decades, recombinant antibody productivity has been improved by more than 100-fold. Medium optimization has been identified as an important key approach for increasing product concentrations. In this study, we evaluated the effects of deoxyuridine addition to fed-batch cultures of antibody-expressing CHO cell lines. Furthermore, we investigated the effects of combined addition of deoxyuridine, thymidine, and deoxycytidine. Our results suggest that addition of these pyrimidine nucleosides can increase CHO cell growth, with no significant change in the specific production rate. As a result of the increased cell growth, the antibody concentration was elevated and we were able to achieve more than 9 g/L during 16 days of culture. Similar effects of nucleoside addition were observed in fed-batch cultures of a Fab fragment-expressing CHO cell line, and the final Fab fragment concentration was more than 4 g/L. This nucleoside addition strategy could be a powerful platform for efficient antibody production.
ISSN:0920-9069
1573-0778
DOI:10.1007/s10616-017-0066-7