Loading…
Barrier Crossing in Escherichia coli Chemotaxis
We study cell navigation in spatiotemporally complex environments by developing a microfluidic racetrack device that creates a traveling wave with multiple peaks and a tunable wave speed. We find that while the population-averaged chemotaxis drift speed increases with wave speed for low wave speed,...
Saved in:
Published in: | Physical review letters 2017-03, Vol.118 (9), p.098101-098101, Article 098101 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study cell navigation in spatiotemporally complex environments by developing a microfluidic racetrack device that creates a traveling wave with multiple peaks and a tunable wave speed. We find that while the population-averaged chemotaxis drift speed increases with wave speed for low wave speed, it decreases sharply for high wave speed. This reversed dependence of population-averaged chemotaxis drift speed on wave speed is caused by a "barrier-crossing" phenomenon, where a cell hops backwards from one peak attractant location to the peak behind by crossing an unfavorable (barrier) region with low attractant concentrations. By using a coarse-grained model of chemotaxis, we map bacterial motility in an attractant field to the random motion of an overdamped particle in an effective potential. The observed barrier-crossing phenomenon of living cells and its dependence on the spatiotemporal profile of attractant concentration are explained quantitatively by Kramers reaction rate theory. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.118.098101 |