Loading…

A quantitative method for screening and identifying molecular targets for nanomedicine

Identifying a molecular target is essential for tumor-targeted nanomedicine. Current cancer nanomedicines commonly suffer from poor tumor specificity, “off-target” toxicity, and limited clinical efficacy. Here, we report a method to screen and identify new molecular targets for tumor-targeted nanome...

Full description

Saved in:
Bibliographic Details
Published in:Journal of controlled release 2017-10, Vol.263, p.57-67
Main Authors: Guo, Peng, Yang, Jiang, Bielenberg, Diane R., Dillon, Deborah, Zurakowski, David, Moses, Marsha A., Auguste, Debra T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Identifying a molecular target is essential for tumor-targeted nanomedicine. Current cancer nanomedicines commonly suffer from poor tumor specificity, “off-target” toxicity, and limited clinical efficacy. Here, we report a method to screen and identify new molecular targets for tumor-targeted nanomedicine based on a quantitative analysis. In our proof-of-principle study, we used comparative flow cytometric screening to identify ICAM-1 as a potential target for metastatic melanoma (MM). We further evaluated ICAM-1 as a MM targeting moiety by characterizing its (1) tumor specificity, (2) expression level, (3) cellular internalization, (4) therapeutic function, and (5) potential clinical impact. Quantitation of ICAM-1 protein expression on cells and validation by immunohistochemistry on human tissue specimens justified the synthesis of antibody-functionalized drug delivery vehicles, which were benchmarked against appropriate controls. We engineered ICAM-1 antibody conjugated, doxorubicin encapsulating immunoliposomes (ICAM-Dox-LPs) to selectively recognize and deliver doxorubicin to MM cells and simultaneously neutralize ICAM-1 signaling via an antibody blockade, demonstrating significant and simultaneous inhibitory effects on MM cell proliferation and migration. This paper describes a novel, quantitative metric system that identifies and evaluates new cancer targets for tumor-targeting nanomedicine. [Display omitted]
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2017.03.030