Loading…
Ilomastat, a synthetic inhibitor of MMPs, prevents lung injury induced by γ-ray irradiation in mice
Lung injury is one of the pathological features in human or animal after radiation and the main side effect for patient after lung cancer radiotherapy. The efficient protective strategy still needs to exploit and the underlying mechanisms remain to be investigated. We found that the expression and a...
Saved in:
Published in: | Oncotarget 2017-09, Vol.8 (37), p.60789-60808 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lung injury is one of the pathological features in human or animal after radiation and the main side effect for patient after lung cancer radiotherapy. The efficient protective strategy still needs to exploit and the underlying mechanisms remain to be investigated. We found that the expression and activity of matrix metalloproteinases (MMPs) significantly increased at the early stage of radiation-induced lung injury (RILI). Pretreatment with Ilomastat, a synthetic inhibitor of MMPs, decreased the expression and activity of MMPs and significantly alleviated the lung inflammation and fibrosis in the irradiated mice, as well as enhanced the survival of irradiated mice. In addition, the levels of TGF-β, IL-6, TNF-α and IL-1β in the tissues dramatically reduced in the irradiated mice pretreated with Ilomastat. Furthermore, our experiments
also showed that radiation significantly increased the MMPs activity, and Ilomastat pretreatment inhibited the activity of MMPs activated by irradiation and increased the cell survival. It is the first report, to our knowledge, to demonstrate that Ilomastat is a potential effective reliever for RILI and MMPs may play important roles in the process of RILI. |
---|---|
ISSN: | 1949-2553 1949-2553 |
DOI: | 10.18632/oncotarget.18487 |